Learning-Based Approach for Atmospheric Compensation of VNIR Hyperspectral Data

Author(s):  
Nicola Acito ◽  
Marco Diani ◽  
Giovanni Corsini
2021 ◽  
Vol 13 (15) ◽  
pp. 2967
Author(s):  
Nicola Acito ◽  
Marco Diani ◽  
Gregorio Procissi ◽  
Giovanni Corsini

Atmospheric compensation (AC) allows the retrieval of the reflectance from the measured at-sensor radiance and is a fundamental and critical task for the quantitative exploitation of hyperspectral data. Recently, a learning-based (LB) approach, named LBAC, has been proposed for the AC of airborne hyperspectral data in the visible and near-infrared (VNIR) spectral range. LBAC makes use of a parametric regression function whose parameters are learned by a strategy based on synthetic data that accounts for (1) a physics-based model for the radiative transfer, (2) the variability of the surface reflectance spectra, and (3) the effects of random noise and spectral miscalibration errors. In this work we extend LBAC with respect to two different aspects: (1) the platform for data acquisition and (2) the spectral range covered by the sensor. Particularly, we propose the extension of LBAC to spaceborne hyperspectral sensors operating in the VNIR and short-wave infrared (SWIR) portion of the electromagnetic spectrum. We specifically refer to the sensor of the PRISMA (PRecursore IperSpettrale della Missione Applicativa) mission, and the recent Earth Observation mission of the Italian Space Agency that offers a great opportunity to improve the knowledge on the scientific and commercial applications of spaceborne hyperspectral data. In addition, we introduce a curve fitting-based procedure for the estimation of column water vapor content of the atmosphere that directly exploits the reflectance data provided by LBAC. Results obtained on four different PRISMA hyperspectral images are presented and discussed.


Author(s):  
Nicholas Westing ◽  
Brett Borghetti ◽  
Kevin Gross

The increasing spatial and spectral resolution of hyperspectral imagers yields detailed spectroscopy measurements from both space-based and airborne platforms. Machine learning algorithms have achieved state-of-the-art material classification performance on benchmark hyperspectral data sets; however, these techniques often do not consider varying atmospheric conditions experienced in a real-world detection scenario. To reduce the impact of atmospheric effects in the at-sensor signal, atmospheric compensation must be performed. Radiative Transfer (RT) modeling can generate high-fidelity atmospheric estimates at detailed spectral resolutions, but is often too time-consuming for real-time detection scenarios. This research utilizes machine learning methods to perform dimension reduction on the transmittance, upwelling radiance, and downwelling radiance (TUD) data to create high accuracy atmospheric estimates with lower computational cost than RT modeling. The utility of this approach is investigated using the instrument line shape for the Mako long-wave infrared hyperspectral sensor. This study employs physics-based metrics and loss functions to identify promising dimension reduction techniques. As a result, TUD vectors can be produced in real-time allowing for atmospheric compensation across diverse remote sensing scenarios.


2021 ◽  
Author(s):  
Stephane Boubanga Tombet ◽  
Jean-Philippe Gagnon ◽  
Holger Eichstaedt ◽  
Joanne Ho

<p>The use of airborne remote sensing techniques for geological mapping offers many benefits as it allows coverage of large areas in a very efficient way.  While hyperspectral imaging from airborne/spaceborne platforms is now a well-established method applied to resolve many geological problems, it has mostly been developed only in the Visible-Near Infrared (VNIR, 0.4–1.0 mm) and Shortwave Infrared (SWIR, 1.0–2.5 mm) regions of the electromagnetic spectrum. However, the reflectance spectral features measured in the VNIR and SWIR spectral ranges are generally overtones and combination bands from fundamental absorption bands at longer wavelengths, such as in the Longwave Infrared (LWIR, 8–12 mm). The single absorption bands in the VNIR and SWIR spectral ranges are often very closely spaced so that the reflectance features measured by common spectrometers in this spectral region are typically broad and/or suffer from strong overlapping, which raises selectivity issues for mineral identification in some cases.</p><p>The inherent self-emission associated with LWIR under ambient conditions allows airborne mineral mapping in various weather (cloudy, partly cloudy or clear sky) and illumination (day or night) conditions. For this reason, LWIR often refers to the thermal infrared (TIR) spectral range. Solid targets such as minerals not only emit but also reflect TIR radiation. Since the two phenomena occur simultaneously, they end-up mixed in the radiance measured at the sensor level. The spectral features observed in a TIR spectrum of the sky and the atmosphere mostly correspond to ozone, water  vapor, carbon dioxide, methane and nitrous oxide with pretty sharp and narrow features compared with the infrared signature of solid materials such as minerals. The sharp spectral features of atmospheric gases are mixed up with broad minerals features in the collected geological mapping data, to unveil the spectral features associated with minerals from TIR measurements, the respective contributions of self-emission and reflection in the measurement must be «unmixed» and the atmospheric contributions must be compensated. This procedure refers to temperature-emissivity separation (TES). Therefore, to achieve an efficient TES and atmospheric compensation, the collection time and conditions of LWIR airborne hyperspectral data is of importance. Data of a flight mission in Southern Spain collected systematically at different times of the day (morning, mid-day and night) and in different altitudes using the Telops Hyper-Cam airborne system, a passive TIR hyperspectral sensor based on Fourier transform spectroscopy, were analyzed. TES was carried out on the hyperspectral data using<strong> two</strong> different approaches: a) Telops Reveal FLAASH IR software and b) DIMAP In-scene atmospheric compensation algorithm in order to retrieve thermodynamic temperature map and spectral emissivity data. Spectral analysis of the emissivity data with different mineral mapping methods based on commercial spectral libraries was used to compare results obtained during the different flight times and altitudes using the two post-processing methodologies. The results are discussed in the light of optimizing LWIR-based airborne operations in time and altitude to achieve best results for routine field mineral mapping applications such as in mining, soil science or archaeology, where the spatial analysis of mineral and chemical distribution is essential</p>


Sign in / Sign up

Export Citation Format

Share Document