Fine-Grained Recognition for Oriented Ship Against Complex Scenes in Optical Remote Sensing Images

Author(s):  
Yaqi Han ◽  
Xinyi Yang ◽  
Tian Pu ◽  
Zhenming Peng
2021 ◽  
Vol 13 (4) ◽  
pp. 747
Author(s):  
Yanghua Di ◽  
Zhiguo Jiang ◽  
Haopeng Zhang

Fine-grained visual categorization (FGVC) is an important and challenging problem due to large intra-class differences and small inter-class differences caused by deformation, illumination, angles, etc. Although major advances have been achieved in natural images in the past few years due to the release of popular datasets such as the CUB-200-2011, Stanford Cars and Aircraft datasets, fine-grained ship classification in remote sensing images has been rarely studied because of relative scarcity of publicly available datasets. In this paper, we investigate a large amount of remote sensing image data of sea ships and determine most common 42 categories for fine-grained visual categorization. Based our previous DSCR dataset, a dataset for ship classification in remote sensing images, we collect more remote sensing images containing warships and civilian ships of various scales from Google Earth and other popular remote sensing image datasets including DOTA, HRSC2016, NWPU VHR-10, We call our dataset FGSCR-42, meaning a dataset for Fine-Grained Ship Classification in Remote sensing images with 42 categories. The whole dataset of FGSCR-42 contains 9320 images of most common types of ships. We evaluate popular object classification algorithms and fine-grained visual categorization algorithms to build a benchmark. Our FGSCR-42 dataset is publicly available at our webpages.


2021 ◽  
Vol 13 (3) ◽  
pp. 441
Author(s):  
Han Fu ◽  
Bihong Fu ◽  
Pilong Shi

The South China Karst, a United Nations Educational, Scientific and Cultural Organization (UNESCO) natural heritage site, is one of the world’s most spectacular examples of humid tropical to subtropical karst landscapes. The Libo cone karst in the southern Guizhou Province is considered as the world reference site for these types of karst, forming a distinctive and beautiful landscape. Geomorphic information and spatial distribution of cone karst is essential for conservation and management for Libo heritage site. In this study, a deep learning (DL) method based on DeepLab V3+ network was proposed to document the cone karst landscape in Libo by multi-source data, including optical remote sensing images and digital elevation model (DEM) data. The training samples were generated by using Landsat remote sensing images and their combination with satellite derived DEM data. Each group of training dataset contains 898 samples. The input module of DeepLab V3+ network was improved to accept four-channel input data, i.e., combination of Landsat RGB images and DEM data. Our results suggest that the mean intersection over union (MIoU) using the four-channel data as training samples by a new DL-based pixel-level image segmentation approach is the highest, which can reach 95.5%. The proposed method can accomplish automatic extraction of cone karst landscape by self-learning of deep neural network, and therefore it can also provide a powerful and automatic tool for documenting other type of geological landscapes worldwide.


Sign in / Sign up

Export Citation Format

Share Document