scholarly journals Reciprocal translation between SAR and optical remote sensing images with cascaded-residual adversarial networks

2021 ◽  
Vol 64 (2) ◽  
Author(s):  
Shilei Fu ◽  
Feng Xu ◽  
Ya-Qiu Jin
2020 ◽  
Vol 12 (24) ◽  
pp. 4162
Author(s):  
Anna Hu ◽  
Zhong Xie ◽  
Yongyang Xu ◽  
Mingyu Xie ◽  
Liang Wu ◽  
...  

One major limitation of remote-sensing images is bad weather conditions, such as haze. Haze significantly reduces the accuracy of satellite image interpretation. To solve this problem, this paper proposes a novel unsupervised method to remove haze from high-resolution optical remote-sensing images. The proposed method, based on cycle generative adversarial networks, is called the edge-sharpening cycle-consistent adversarial network (ES-CCGAN). Most importantly, unlike existing methods, this approach does not require prior information; the training data are unsupervised, which mitigates the pressure of preparing the training data set. To enhance the ability to extract ground-object information, the generative network replaces a residual neural network (ResNet) with a dense convolutional network (DenseNet). The edge-sharpening loss function of the deep-learning model is designed to recover clear ground-object edges and obtain more detailed information from hazy images. In the high-frequency information extraction model, this study re-trained the Visual Geometry Group (VGG) network using remote-sensing images. Experimental results reveal that the proposed method can recover different kinds of scenes from hazy images successfully and obtain excellent color consistency. Moreover, the ability of the proposed method to obtain clear edges and rich texture feature information makes it superior to the existing methods.


2021 ◽  
Vol 13 (9) ◽  
pp. 1713
Author(s):  
Songwei Gu ◽  
Rui Zhang ◽  
Hongxia Luo ◽  
Mengyao Li ◽  
Huamei Feng ◽  
...  

Deep learning is an important research method in the remote sensing field. However, samples of remote sensing images are relatively few in real life, and those with markers are scarce. Many neural networks represented by Generative Adversarial Networks (GANs) can learn from real samples to generate pseudosamples, rather than traditional methods that often require more time and man-power to obtain samples. However, the generated pseudosamples often have poor realism and cannot be reliably used as the basis for various analyses and applications in the field of remote sensing. To address the abovementioned problems, a pseudolabeled sample generation method is proposed in this work and applied to scene classification of remote sensing images. The improved unconditional generative model that can be learned from a single natural image (Improved SinGAN) with an attention mechanism can effectively generate enough pseudolabeled samples from a single remote sensing scene image sample. Pseudosamples generated by the improved SinGAN model have stronger realism and relatively less training time, and the extracted features are easily recognized in the classification network. The improved SinGAN can better identify sub-jects from images with complex ground scenes compared with the original network. This mechanism solves the problem of geographic errors of generated pseudosamples. This study incorporated the generated pseudosamples into training data for the classification experiment. The result showed that the SinGAN model with the integration of the attention mechanism can better guarantee feature extraction of the training data. Thus, the quality of the generated samples is improved and the classification accuracy and stability of the classification network are also enhanced.


2021 ◽  
Vol 13 (3) ◽  
pp. 441
Author(s):  
Han Fu ◽  
Bihong Fu ◽  
Pilong Shi

The South China Karst, a United Nations Educational, Scientific and Cultural Organization (UNESCO) natural heritage site, is one of the world’s most spectacular examples of humid tropical to subtropical karst landscapes. The Libo cone karst in the southern Guizhou Province is considered as the world reference site for these types of karst, forming a distinctive and beautiful landscape. Geomorphic information and spatial distribution of cone karst is essential for conservation and management for Libo heritage site. In this study, a deep learning (DL) method based on DeepLab V3+ network was proposed to document the cone karst landscape in Libo by multi-source data, including optical remote sensing images and digital elevation model (DEM) data. The training samples were generated by using Landsat remote sensing images and their combination with satellite derived DEM data. Each group of training dataset contains 898 samples. The input module of DeepLab V3+ network was improved to accept four-channel input data, i.e., combination of Landsat RGB images and DEM data. Our results suggest that the mean intersection over union (MIoU) using the four-channel data as training samples by a new DL-based pixel-level image segmentation approach is the highest, which can reach 95.5%. The proposed method can accomplish automatic extraction of cone karst landscape by self-learning of deep neural network, and therefore it can also provide a powerful and automatic tool for documenting other type of geological landscapes worldwide.


2021 ◽  
Vol 30 ◽  
pp. 1305-1317
Author(s):  
Qijian Zhang ◽  
Runmin Cong ◽  
Chongyi Li ◽  
Ming-Ming Cheng ◽  
Yuming Fang ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2524
Author(s):  
Ziyi Chen ◽  
Dilong Li ◽  
Wentao Fan ◽  
Haiyan Guan ◽  
Cheng Wang ◽  
...  

Deep learning models have brought great breakthroughs in building extraction from high-resolution optical remote-sensing images. Among recent research, the self-attention module has called up a storm in many fields, including building extraction. However, most current deep learning models loading with the self-attention module still lose sight of the reconstruction bias’s effectiveness. Through tipping the balance between the abilities of encoding and decoding, i.e., making the decoding network be much more complex than the encoding network, the semantic segmentation ability will be reinforced. To remedy the research weakness in combing self-attention and reconstruction-bias modules for building extraction, this paper presents a U-Net architecture that combines self-attention and reconstruction-bias modules. In the encoding part, a self-attention module is added to learn the attention weights of the inputs. Through the self-attention module, the network will pay more attention to positions where there may be salient regions. In the decoding part, multiple large convolutional up-sampling operations are used for increasing the reconstruction ability. We test our model on two open available datasets: the WHU and Massachusetts Building datasets. We achieve IoU scores of 89.39% and 73.49% for the WHU and Massachusetts Building datasets, respectively. Compared with several recently famous semantic segmentation methods and representative building extraction methods, our method’s results are satisfactory.


Sign in / Sign up

Export Citation Format

Share Document