D–Q Impedance Based Stability Analysis and Parameter Design of Three-Phase Inverter-Based AC Power Systems

2017 ◽  
Vol 64 (7) ◽  
pp. 6017-6028 ◽  
Author(s):  
Wenchao Cao ◽  
Yiwei Ma ◽  
Liu Yang ◽  
Fei Wang ◽  
Leon M. Tolbert
Author(s):  
Essam Hendawi ◽  
Sherif Zaid

<span lang="EN-US">One of the most important and common parts of the modern power systems is the grid-connected photovoltaic (PV) systems. Recently, these systems have gotten a big revolution due to the introduction of the transformerless inverters. It has the merits of small size, low cost, and high efficiency. However, transformerless inverters has a general safety problem related to the earth leakage current. Various researches were directed toward evolving their performance and diminishing the leakage current to the standard limits. This article proposes an application of the H7 controller to a PV powered grid-tied three phase transformerless inverter. The transformerless inverter is linked with the grid through a boost converter. The boost converter inductance is rearranged and divided to reduce the earth leakage current of the system. simulations are carried out for the proposed H7 PV grid-tied system and for a system that uses the conventional three phase inverter. The simulation results show that the H7 inverter provides lower leakage current, higher efficiency, and lower total harmonic distortion (THD) compared to the conventional three phase inverter.</span>


Author(s):  
Imran Chowdhury ◽  
◽  
Saroar Hossain ◽  
Niloy Kumar Das ◽  
Taslim Ahmed ◽  
...  

Rapid depletion of fossil fuel reserves, and concerns over climate change have encouraged power generation from sustainable energy based microgrids. And to address the necessity of three-phase inverters in microgrid systems or sustainable-powered households, an Arduino-based three-phase inverter using MOSFET is designed, which converts DC into three-phase AC power. The designed system generates 223V square signals at each phase from a 12V battery through switching of three stages of power MOSFETs using pulse width modulation (PWM) signals at their gates from an Arduino Uno. Each stage of power MOSFETs consists of six transistors making it eighteen in total, which are used to perform the inversion process separately for each three single-phase connections. The system is programmed using an Arduino Uno to generate PWM signals and to keep 120 degrees phase displacement among each phase. Three step-up transformers are coupled at the outputs of MOSFET stages for amplification. The system generates 386.25V of voltage for the three-phase line delivering 0.58A of current using a 60W incandescent bulb at each phase as a load. The design and simulation of the electronic circuit are done by Proteus, and the programming codes are written using Arduino IDE. The designed system is practically contrasted and verified.


Sign in / Sign up

Export Citation Format

Share Document