Optimized Implementation of a Current Control Algorithm for Multiphase Interleaved Power Converters

2014 ◽  
Vol 10 (4) ◽  
pp. 2224-2232 ◽  
Author(s):  
Pablo D. Antoszczuk ◽  
Rogelio Garcia Retegui ◽  
Marcos Funes ◽  
Daniel Carrica
Author(s):  
Changhai Ru

Piezoelectric transducers are known to exhibit less hysterisis when driven with current or charge rather than voltage. Despite this advantage, such methods have found little practical application due to the poor low frequency response of present current and charge driver designs. In this paper, a current control piezoelectric amplifier is presented which can reduce hysteresis. Special circuits and a hybrid control algorithm realize the quick and precise positioning. Experimental results demonstrate that the amplifier can be used for dynamic and static applications. Low frequency bandwidths can be achieved.


Energy saving can be maximized by rectifying the intermediate conversion processes involved during the utilization of solar energy. The system eliminates the transformation of electrical form of solar energy into another form by directly utilizing its electrical energy in the management and control of power supplies obtained from renewable (solar) and conventional (mains) energy sources. A current control scheme is presented in which current delivered by solar supply is used to control the current in mains supply in such a way that both currents are inversely proportional to each other. Any increment in solar current opposes mains current in the same proportion and vice versa. A balanced common physical output is resulted from the electrical load supplied by each source separately. A natural variation in solar radiation is utilized to fluctuate the solar current which is further used to change the mains current. Energy saving is maximized in this supply management by the optimal utilization of solar energy.


2015 ◽  
Vol 799-800 ◽  
pp. 1211-1216
Author(s):  
Narin Watanakul

This paper presents an application of an asynchronous back to back VSC-HVDC system. Which uses multilevel converter a 7-level Diode-Clamped SPWM converters topology technique for the realization of HVDC system, rated 300MVA (±300 kV). The controller has been proposed by using PQ control and feed-forward decoupled current control algorithm. The design and experimentally controllers of VSC in lab scaled test, MATLAB/Simulink program were performed VSC-HVDC transmission system, the simulation in order to evaluate transient performance, can be controlled independently under two phase to ground faulted and three phase to ground faulted conditions. The system are used as a guideline for analysing and design of the data process control with the PQ-control HVDC system.


2020 ◽  
Vol 26 ◽  
pp. 8
Author(s):  
Ahmet Özkan Özer ◽  
Kirsten A. Morris

Piezoelectric materials can be controlled with current (or charge) as the electrical input, instead of voltage. The main purpose of this paper is to derive the governing equations for a current-controlled piezo-electric beam and to investigate stabilizability. The magnetic permeability in piezo-electric materials is generally neglected in models. However, it has a significant qualitative effect on properties of the control system such as stabilizability. Besides the consideration of current control, there are several new aspects to the model. Most importantly, a fully dynamic magnetic model is included. Also, electrical potential and magnetic vector potential are chosen to be quadratic-through thickness to include the induced effects of the electromagnetic field. Hamilton’s principle is used to derive a boundary value problem that models a single piezo-electric beam actuated by a current (or charge) source at the electrodes. Two sets of decoupled system of partial differential equations are obtained; one for stretching of the beam and another one for bending motion. Since current (or charge) controller only affects the stretching motion, attention is focused on control of the stretching equations in this paper. It is shown that the Lagrangian of the beam is invariant under certain transformations. A Coulomb type gauge condition is used. This gauge condition decouples the electrical potential equation from the equations of the magnetic potential. A semigroup approach is used to prove that the Cauchy problem is well-posed. Unlike voltage actuation, a bounded control operator in the natural energy space is obtained. The paper concludes with analysis of stabilizability and comparison with other actuation approaches and models.


Sign in / Sign up

Export Citation Format

Share Document