Recursive Exponential Slow Feature Analysis for Fine-Scale Adaptive Processes Monitoring With Comprehensive Operation Status Identification

2019 ◽  
Vol 15 (6) ◽  
pp. 3311-3323 ◽  
Author(s):  
Wanke Yu ◽  
Chunhui Zhao
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Anastasios A. Tsonis ◽  
Geli Wang ◽  
Lvyi Zhang ◽  
Wenxu Lu ◽  
Aristotle Kayafas ◽  
...  

Abstract Background Mathematical approaches have been for decades used to probe the structure of DNA sequences. This has led to the development of Bioinformatics. In this exploratory work, a novel mathematical method is applied to probe the DNA structure of two related viral families: those of coronaviruses and those of influenza viruses. The coronaviruses are SARS-CoV-2, SARS-CoV-1, and MERS. The influenza viruses include H1N1-1918, H1N1-2009, H2N2-1957, and H3N2-1968. Methods The mathematical method used is the slow feature analysis (SFA), a rather new but promising method to delineate complex structure in DNA sequences. Results The analysis indicates that the DNA sequences exhibit an elaborate and convoluted structure akin to complex networks. We define a measure of complexity and show that each DNA sequence exhibits a certain degree of complexity within itself, while at the same time there exists complex inter-relationships between the sequences within a family and between the two families. From these relationships, we find evidence, especially for the coronavirus family, that increasing complexity in a sequence is associated with higher transmission rate but with lower mortality. Conclusions The complexity measure defined here may hold a promise and could become a useful tool in the prediction of transmission and mortality rates in future new viral strains.


2016 ◽  
Vol 23 (12) ◽  
pp. 1702-1706 ◽  
Author(s):  
Zhouzhou He ◽  
Xi Li ◽  
Zhongfei Zhang ◽  
Yaqing Zhang ◽  
Jun Xiao ◽  
...  

2015 ◽  
Vol 124 (3-4) ◽  
pp. 985-989 ◽  
Author(s):  
Geli Wang ◽  
Peicai Yang ◽  
Xiuji Zhou

2015 ◽  
Vol 22 (4) ◽  
pp. 377-382 ◽  
Author(s):  
G. Wang ◽  
X. Chen

Abstract. Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.


Sign in / Sign up

Export Citation Format

Share Document