Rapid-Flooding Time Synchronization for Large-Scale Wireless Sensor Networks

2020 ◽  
Vol 16 (3) ◽  
pp. 1581-1590 ◽  
Author(s):  
Fanrong Shi ◽  
Xianguo Tuo ◽  
Simon X. Yang ◽  
Jing Lu ◽  
Huailiang Li
2012 ◽  
Vol 263-266 ◽  
pp. 866-871
Author(s):  
Gang Yang ◽  
Ming Fei Liang ◽  
Tian Tian Xu

In large scale of WSNs (wireless sensor networks), a centralized algorithm is not suitable for WSNs. Distributed algorithm has the obvious advantage over traditional time synchronization algorithm. The paper proposes a distributed time synchronization algorithm for WSNs, called SNOWBALL effect time synchronization. In the algorithm, a node needs only to communicate with its neighbor node, synchronizing itself clock based on the neighbor nodes information. The algorithm is a continuous synchronization process. The network will reach balance and clock consistency after repeated algorithm iterations. In the algorithm, we achieve network energy optimization by reducing unnecessary message exchange.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3020 ◽  
Author(s):  
Linh-An Phan ◽  
Taejoon Kim ◽  
Taehong Kim ◽  
JaeSeang Lee ◽  
Jae-Hyun Ham

The time synchronization protocol is indispensable in various applications of wireless sensor networks, such as scheduling, monitoring, and tracking. Numerous protocols and algorithms have been proposed in recent decades, and many of them provide micro-scale resolutions. However, designing and implementing a time synchronization protocol in a practical wireless network is very challenging compared to implementation in a wired network; this is because its performance can be deteriorated significantly by many factors, including hardware quality, message delay jitter, ambient environment, and network topology. In this study, we measure the performance of the Flooding Time Synchronization Protocol (FTSP) and Gradient Time Synchronization Protocol (GTSP) in terms of practical network conditions, such as message delay jitter, synchronization period, network topology, and packet loss. This study provides insights into the operation and optimization of time synchronization protocols. In addition, the performance evaluation identifies that FTSP is highly affected by message delay jitter due to error accumulation over multi-hops. We demonstrate that the proposed extended version of the FTSP (E-FTSP) alleviates the effect of message delay jitter and enhances the overall performance of FTSP in terms of error, time, and other factors.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Tarek R. Sheltami ◽  
Danish Sattar ◽  
Elhadi M. Shakshuki ◽  
Ashraf S. Mahmoud

Time synchronization is a crucial part of distributed systems. It is often required for data reliability and coordination in wireless sensor networks (WSNs). Wireless sensor networks have three major goals: time synchronization, low bandwidth operation, and energy efficiency. Different time synchronization algorithms are aimed at achieving these objectives using various methods. This paper presents performance evaluation of two state-of-the-art time synchronization protocols, namely, Flooding Time Synchronization Protocol and Recursive Time Synchronization Protocol. To achieve time synchronization in wireless sensor networks, these two protocols make use of broadcast and peer-to-peer mechanisms. Flooding Time Synchronization Protocol uses the former mechanism, while Recursive Time Synchronization Protocol uses the latter mechanism. To perform the performance evaluation, three performance metrics are used including synchronization message count per cycle, bandwidth, and convergence time. Arduino is used as a micro-controller and XBee as transceiver to verify these metrics by utilizing different topologies.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4293
Author(s):  
Junhai Luo ◽  
Yang Yang ◽  
Zhiyan Wang ◽  
Yanping Chen ◽  
Man Wu

As one of the important facilities for marine exploration, as well as environment monitoring, access control, and security, underwater wireless sensor networks (UWSNs) are widely used in related military and civil fields, since the sensor node localization is the basis of UWSNs’ application in various related fields. Therefore, the research of localization algorithms based on UWSNs has gradually become one of the research hotspots today. However, unlike terrestrial wireless sensor networks (WSNs), many terrestrial monitoring and localization technologies cannot be directly applied to the underwater environment. Moreover, due to the complexity and particularity of the underwater environment, the localization of underwater sensor nodes still faces challenges, such as the localization ratio of sensor nodes, time synchronization, localization accuracy, and the mobility of nodes. In this paper, we propose a mobility-assisted localization scheme with time synchronization-free feature (MALS-TSF) for three-dimensional (3D) large-scale UWSNs. In addition, the underwater drift of the sensor node is considered in this scheme. The localization scheme can be divided into two phases. In Phase I, anchor nodes are distributed in the monitoring area, reducing the monitoring cost. Then, we address a time-synchronization-free localization scheme, to obtain the coordinates of the unknown sensor nodes. In Phase II, we use the method of two-way TOA to locate the remaining ordinary sensor nodes. The simulation results show that MALS-TSF can achieve a relatively high localization ratio without time synchronization.


2014 ◽  
Vol 37 ◽  
pp. 77-91 ◽  
Author(s):  
Ge Huang ◽  
Albert Y. Zomaya ◽  
Flávia C. Delicato ◽  
Paulo F. Pires

2013 ◽  
Vol 846-847 ◽  
pp. 526-530
Author(s):  
Chao Shi ◽  
Hong Bing Qiu ◽  
Yun Yi Wang

A scheme of time synchronization for large scale wireless sensor networks based on multi-broadcast gossip algorithm is proposed in this paper. It is allowed multiple nodes can broadcast their time information simultaneously. In order to avoid communication collisions and receiving confusion, according to graph theory the distance between any two broadcasting nodes is restricted as 3. It is proved for convergence performance of this scheme by using stochastic matrix theory. The performance for this scheme is discussed. The computer simulations are given to test and verify the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document