High-Sensitivity Inductive Pressure Sensor

2011 ◽  
Vol 60 (8) ◽  
pp. 2960-2966 ◽  
Author(s):  
Ezzat G. Bakhoum ◽  
Marvin H. M. Cheng
RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13898-13905
Author(s):  
Chuan Cai ◽  
He Gong ◽  
Weiping Li ◽  
Feng Gao ◽  
Qiushi Jiang ◽  
...  

A three-dimensional electrospun carbon nanofiber network was used to measure press strains with high sensitivity.


2021 ◽  
pp. 1-1
Author(s):  
Valliammai Palaniappan ◽  
Masoud Panahi ◽  
Dinesh Maddipatla ◽  
Xingzhe Zhang ◽  
Simin Masihi ◽  
...  

2021 ◽  
Vol 53 (8) ◽  
Author(s):  
Hanglin Lu ◽  
Yalan Niu ◽  
Jian Tang ◽  
Li Yang ◽  
Laipeng Shao ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Joon Lee ◽  
Srinivas Gandla ◽  
Byeongjae Lim ◽  
Sunju Kang ◽  
Sunyoung Kim ◽  
...  

Abstract Conformal and ultrathin coating of highly conductive PEDOT:PSS on hydrophobic uneven surfaces is essential for resistive-based pressure sensor applications. For this purpose, a water-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution was successfully exchanged to an organic solvent-based PEDOT:PSS solution without any aggregation or reduction in conductivity using the ultrafiltration method. Among various solvents, the ethanol (EtOH) solvent-exchanged PEDOT:PSS solution exhibited a contact angle of 34.67°, which is much lower than the value of 96.94° for the water-based PEDOT:PSS solution. The optimized EtOH-based PEDOT:PSS solution exhibited conformal and uniform coating, with ultrathin nanocoated films obtained on a hydrophobic pyramid polydimethylsiloxane (PDMS) surface. The fabricated pressure sensor showed high performances, such as high sensitivity (−21 kPa−1 in the low pressure regime up to 100 Pa), mechanical stability (over 10,000 cycles without any failure or cracks) and a fast response time (90 ms). Finally, the proposed pressure sensor was successfully demonstrated as a human blood pulse rate sensor and a spatial pressure sensor array for practical applications. The solvent exchange process using ultrafiltration for these applications can be utilized as a universal technique for improving the coating property (wettability) of conducting polymers as well as various other materials.


2012 ◽  
Vol 29 (8) ◽  
pp. 088501 ◽  
Author(s):  
Zhao-Hua Zhang ◽  
Tian-Ling Ren ◽  
Yan-Hong Zhang ◽  
Rui-Rui Han ◽  
Li-Tian Liu

2002 ◽  
Vol 101 (3) ◽  
pp. 332-337 ◽  
Author(s):  
J.S. Yang ◽  
X. Zhang

2013 ◽  
Vol 771 ◽  
pp. 159-162
Author(s):  
Li Feng Qi ◽  
Zhi Min Liu ◽  
Xing Ye Xu ◽  
Guan Zhong Chen ◽  
Xue Qing

The relative research of low range and high anti-overload piezoresistive pressure sensor is carried out in this paper and a new kind of sensor chip structure, the double ends-four beam structure, is proposed. Trough the analysis, the sensor chip structure designed in this paper has high sensitivity and linearity. The chip structure is specially suit for the micro-pressure sensor. The theoretical analysis and finite element analysis is taken in this paper, which provide important scientific basis for the pressure sensor development.


Sign in / Sign up

Export Citation Format

Share Document