capacitive pressure sensor
Recently Published Documents


TOTAL DOCUMENTS

433
(FIVE YEARS 130)

H-INDEX

28
(FIVE YEARS 9)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 256
Author(s):  
Gen-Wen Hsieh ◽  
Liang-Cheng Shih ◽  
Pei-Yuan Chen

We propose a flexible capacitive pressure sensor that utilizes porous polydimethylsiloxane elastomer with zinc oxide nanowire as nanocomposite dielectric layer via a simple porogen-assisted process. With the incorporation of nanowires into the porous elastomer, our capacitive pressure sensor is not only highly responsive to subtle stimuli but vigorously so to gentle touch and verbal stimulation from 0 to 50 kPa. The fabricated zinc oxide nanowire–porous polydimethylsiloxane sensor exhibits superior sensitivity of 0.717 kPa−1, 0.360 kPa−1, and 0.200 kPa−1 at the pressure regimes of 0–50 Pa, 50–1000 Pa, and 1000–3000 Pa, respectively, presenting an approximate enhancement by 21−100 times when compared to that of a flat polydimethylsiloxane device. The nanocomposite dielectric layer also reveals an ultralow detection limit of 1.0 Pa, good stability, and durability after 4000 loading–unloading cycles, making it capable of perception of various human motions, such as finger bending, calligraphy writing, throat vibration, and airflow blowing. A proof-of-concept trial in hydrostatic water pressure sensing has been demonstrated with the proposed sensors, which can detect tiny changes in water pressure and may be helpful for underwater sensing research. This work brings out the efficacy of constructing wearable capacitive pressure sensors based on a porous dielectric hybrid with stress-sensitive nanostructures, providing wide prospective applications in wearable electronics, health monitoring, and smart artificial robotics/prosthetics.


Author(s):  
Jing Wang ◽  
Longwei Li ◽  
Lanshuang Zhang ◽  
Panpan Zhang ◽  
Xiong Pu

Abstract Highly sensitive soft sensors play key roles in flexible electronics, which therefore have attracted much attention in recent years. Herein, we report a flexible capacitive pressure sensor with high sensitivity by using engineered micro-patterned porous polydimethylsiloxane (PDMS) dielectric layer through an environmental-friendly fabrication procedure. The porous structure is formed by evaporation of emulsified water droplets during PDMS curing process, while the micro-patterned structure is obtained via molding on sandpaper. Impressively, this structure renders the capacitive sensor with a high sensitivity up to 143.5 MPa-1 at the pressure range of 0.068~150 kPa and excellent anti-fatigue performance over 20,000 cycles. Meanwhile, the sensor can distinguish different motions of the same person or different people doing the same action. Our work illustrates the promising application prospects of this flexible pressure sensor for the security field or human motion monitoring area.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ruzhan Qin ◽  
Mingjun Hu ◽  
Xin Li ◽  
Te Liang ◽  
Haoyi Tan ◽  
...  

AbstractThe development of flexible capacitive pressure sensors has wide application prospects in the fields of electronic skin and intelligent wearable electronic devices, but it is still a great challenge to fabricate capacitive sensors with high sensitivity. Few reports have considered the use of interdigital electrode structures to improve the sensitivity of capacitive pressure sensors. In this work, a new strategy for the fabrication of a high-performance capacitive flexible pressure sensor based on MXene/polyvinylpyrrolidone (PVP) by an interdigital electrode is reported. By increasing the number of interdigital electrodes and selecting the appropriate dielectric layer, the sensitivity of the capacitive sensor can be improved. The capacitive sensor based on MXene/PVP here has a high sensitivity (~1.25 kPa−1), low detection limit (~0.6 Pa), wide sensing range (up to 294 kPa), fast response and recovery times (~30/15 ms) and mechanical stability of 10000 cycles. The presented sensor here can be used for various pressure detection applications, such as finger pressing, wrist pulse measuring, breathing, swallowing and speech recognition. This work provides a new method of using interdigital electrodes to fabricate a highly sensitive capacitive sensor with very promising application prospects in flexible sensors and wearable electronics.


2021 ◽  
Author(s):  
Liangliang Liu ◽  
Xin Yan

Abstract In recent years, capacitive flexible pressure sensors have been widely studied in electronic skin and wearable devices. The traditional capacitive pressure sensor has a higher production cost due to micro-nano machining technology such as lithography. This paper presents a flexible transparent capacitive pressure sensor based on a PDMS/CNT composite electrode, simple, transparent, flexible, and arrays without lithography. The sensitivity of the device has been tested to 0.0018 kpa -1 with a detection range of 0-30 kPa. The sensor is capable of rapidly detecting different pressures and remains stable after 100 load-unload tests.


Author(s):  
Rongliang Zheng ◽  
Youyuan Wang ◽  
Zhanxi Zhang ◽  
Yanfang Zhang ◽  
Jinzhan Liu

Abstract Recently, flexible pressure sensors have attracted considerable interest in electronic skins, wearable devices, intelligent robots and biomedical diagnostics. However, the design of high sensitivity flexible pressure sensors often relies on expensive materials and complex process technology, which greatly limit their popularity and applications. Even worse, chemical-based sensors are poorly biocompatible and harmful to the environment. Here, we developed a flexible capacitive pressure sensor based on reduced graphene oxide (rGO) cotton fiber by a simple and low-cost preparation process. The environmentally friendly sensor exhibited a comprehensive performance with not only ultra-high sensitivity (up to 15.84 kPa-1) and a broad sensing range (0-500 kPa), but also excellent repeatability (over 400 cycles), low hysteresis (≤11.6%), low detection limit (<0.1 kPa) and wide frequency availability (sensitivity from 19.71 kPa-1 to 11.24 kPa-1, frequency from 100 Hz to 10 kHz). Based on its superior performance, the proposed sensor can detect various external stimuli (vertical stress, bending and airflow) and has been successfully applied for facial expression recognition, breathing detection, joint movement and walking detection, showing great potential for application in artificial electronic skin and wearable healthcare devices.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamid Reza Ansari ◽  
Zoheir Kordrostami

Abstract In this paper, the improvement of the sensitivity of a capacitive MEMS pressure sensor is investigated. The proposed spring for the sensor can increase the sensitivity. Silicon is used as the substrate and gold and aluminium nitrate are used as the diaphragm and the dielectric layer, respectively. The dimensions of the diaphragm are 150 µm × 150 µm, which is suspended by four springs. The air gap between the diaphragm and the top electrode is 1.5 µm. The proposed structure is an efficient sensor for the pressures in the range of 1–20 kPa. By using the proposed design, the sensitivity of the MEMS sensor in 18 kPa has improved to 663 (× 10−3 pF/kPa).


Sign in / Sign up

Export Citation Format

Share Document