On Smart Soccer Ball as a Head Impact Sensor

2019 ◽  
Vol 68 (8) ◽  
pp. 2979-2987 ◽  
Author(s):  
Theodore Stone ◽  
Nathaniel Stone ◽  
Nirupam Roy ◽  
William Melton ◽  
J. Benjamin Jackson ◽  
...  
Keyword(s):  
Author(s):  
Declan A Patton ◽  
Colin M Huber ◽  
Ethan C Douglas ◽  
Thomas Seacrist ◽  
Kristy B Arbogast

Recent advances in technology have enabled the development of instrumented equipment, which estimate the head impact kinematics of athletes in vivo. One such headband-mounted impact sensor is the SIM-G (Triax Technologies, Norwalk, CT, USA), which has been previously used to investigate the biomechanics of soccer heading by human subjects. Previous studies have evaluated the accuracy of the SIM-G for pure rotation and pendulum, impulse hammer and drop rig impacts. The current study used a soccer ball heading model to evaluate the accuracy of the SIM-G. A soccer ball was projected at the head of an anthropomorphic test device (ATD) representing a 10-year-old to replicate the heading maneuver at various impact sites, angles and speeds previously identified in youth soccer. Linear regression revealed that the SIM-G sensor overestimated the peak angular velocity and linear acceleration recorded by the ATD headform by approximately 44% and 105%, respectively. Tests in which the ball directly contacted the SIM-G sensor resulted in the largest peak linear accelerations. Glancing impacts were significantly associated with a decrease in percentage error of the SIM-G sensor peak angular velocity data relative to the ATD reference data. While it may not demonstrate accuracy in estimating the magnitudes of head impacts, the SIM-G remains a useful tool to provide estimates of head impact exposure for soccer players.


Author(s):  
Anthony J. Paris ◽  
Kyle R. Antonini ◽  
Jennifer McFerran Brock

The objective of this study was to investigate the accelerations of the head during soccer ball heading by introducing a prototype accelerometer-chip instrumented mouth guard. This mouth guard was evaluated for further use in head impact studies.


2018 ◽  
Vol 99 (11) ◽  
pp. e152
Author(s):  
Colin Huber ◽  
Declan Patton ◽  
Kayleigh Jenkins ◽  
Kristy Arbogast

2021 ◽  
Author(s):  
Shah Wasif Sazzad ◽  
Tasnia Noboni ◽  
Saad Rahman ◽  
Mohammad Mamun

2021 ◽  
pp. 036354652110266
Author(s):  
Landon B. Lempke ◽  
Rachel S. Johnson ◽  
Rachel K. Le ◽  
Melissa N. Anderson ◽  
Julianne D. Schmidt ◽  
...  

Background: Youth flag football participation has rapidly grown and is a potentially safer alternative to tackle football. However, limited research has quantitatively assessed youth flag football head impact biomechanics. Purpose: To describe head impact biomechanics outcomes in youth flag football and explore factors associated with head impact magnitudes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: We monitored 52 player-seasons among 48 male flag football players (mean ± SD; age, 9.4 ± 1.1 years; height, 138.6 ± 9.5 cm; mass, 34.7 ± 9.2 kg) across 3 seasons using head impact sensors during practices and games. Sensors recorded head impact frequencies, peak linear ( g) and rotational (rad/s2) acceleration, and estimated impact location. Impact rates (IRs) were calculated as 1 impact per 10 player-exposures; IR ratios (IRRs) were used to compare season, event type, and age group IRs; and 95% CIs were calculated for IRs and IRRs. Weekly and seasonal cumulative head impact frequencies and magnitudes were calculated. Mixed-model regression models examined the association between player characteristics, event type, and seasons and peak linear and rotational accelerations. Results: A total of 429 head impacts from 604 exposures occurred across the study period (IR, 7.10; 95% CI, 4.81-10.50). Weekly and seasonal cumulative median head impact frequencies were 1.00 (range, 0-2.63) and 7.50 (range, 0-21.00), respectively. The most frequent estimated head impact locations were the skull base (n = 96; 22.4%), top of the head (n = 74; 17.2%), and back of the head (n = 66; 15.4%). The combined event type IRs differed among the 3 seasons (IRR range, 1.45-2.68). Games produced greater IRs (IRR, 1.24; 95% CI, 1.01-1.53) and peak linear acceleration (mean difference, 5.69 g; P = .008) than did practices. Older players demonstrated greater combined event–type IRs (IRR, 1.46; 95% CI, 1.12-1.90) and increased head impact magnitudes than did younger players, with every 1-year age increase associated with a 3.78 g and 602.81-rad/s2 increase in peak linear and rotational acceleration magnitude, respectively ( P≤ .005). Conclusion: Head IRs and magnitudes varied across seasons, thus highlighting multiple season and cohort data are valuable when providing estimates. Head IRs were relatively low across seasons, while linear and rotational acceleration magnitudes were relatively high.


Sign in / Sign up

Export Citation Format

Share Document