Self-powered Wireless Sensor Node for Smart Railway Axle Box bearing via a Variable Reluctance Energy Harvesting System

Author(s):  
Yun Gong ◽  
Sijia Wang ◽  
Zhengqiu Xie ◽  
Tao Zhang ◽  
Wenqiang Chen ◽  
...  
2011 ◽  
Vol 46 (7) ◽  
pp. 1728-1741 ◽  
Author(s):  
Hannes Reinisch ◽  
Stefan Gruber ◽  
Hartwig Unterassinger ◽  
Martin Wiessflecker ◽  
Günter Hofer ◽  
...  

A novel self-powered wireless sensor node is proposed and prototyped to overcome the ambient energy lacking in the dual energy harvesting sources by including a secondary energy storage. Moreover, an energy-aware Event-Priority-Driven Dissemination (EPDD) management algorithm has been developed and implemented to control the WSN integrity and reducing the sensor node power consumption as well. EPDD was developed to manage the sensor node operation and to make the sink station able to detect a missing wireless node within the network, which will guarantee the nodes integrity detection. The evaluations revealed that the EPDD shows a good performance in reducing the node power consumption compared to the data push algorithm, whereby, EPDD node was operating 4 hours more than the data push node on the same power source. Regarding the WSN integrity, the EPDD algorithm outpaced the event trigger algorithm, whereby, the EPDD was easily able to detect a node down within the WSN at the contrary of the event trigger.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xihai Zhang ◽  
Junlong Fang ◽  
Fanfeng Meng ◽  
Xiaoli Wei

Wireless sensor networks (WSNs) have been expected to improve the capability of capturing mechanical vibration dynamic behaviors and evaluating the current health status of equipment. While the expectation for mechanical vibration monitoring using WSNs has been high, one of the key limitations is the limited lifetime of batteries for sensor node. The energy harvesting technologies have been recently proposed. One of them shares the same main idea, that is, energy harvesting from ambient vibration can be converted into electric power. Employing the vibration energy harvesting, a novel self-powered wireless sensor node has been developed to measure mechanical vibration in this paper. The overall architecture of node is proposed. The wireless sensor node is described into four main components: the energy harvesting unit, the microprocessor unit, the radio transceiver unit, and accelerometer. Moreover, the software used to control the operation of wireless node is also suggested. At last, in order to achieve continuous self-powered for nodes, two operation modes including the charging mode and discharging mode are proposed. This design can effectively solve the problem of continuous supply power of sensor node for mechanical vibration monitoring.


2008 ◽  
Vol 19 (12) ◽  
pp. 125202 ◽  
Author(s):  
R Torah ◽  
P Glynne-Jones ◽  
M Tudor ◽  
T O'Donnell ◽  
S Roy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document