Development of Low–Cost Portable Blood Vessel Imaging System

Author(s):  
Ayse Altay ◽  
Abdurrahman Gumus
2009 ◽  
Author(s):  
Natascha J. Cuper ◽  
Rudolf M. Verdaasdonk ◽  
Rowland de Roode

Author(s):  
Chung Hsing Li ◽  
Tzu-Chao Yan ◽  
Yuhsin Chang ◽  
Chyong Chen ◽  
Chien-Nan Kuo

1984 ◽  
Vol 17 (6) ◽  
pp. 526-532 ◽  
Author(s):  
G F Kirkbright ◽  
R M Miller ◽  
A Rzadkiewicz

2009 ◽  
Vol 14 (1) ◽  
pp. 014015 ◽  
Author(s):  
Sri-Rajasekhar Kothapalli ◽  
Lihong V. Wang

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1762
Author(s):  
Yuki Gao ◽  
Maryam Ravan ◽  
Reza K. Amineh

The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.


2022 ◽  
Vol 15 (2) ◽  
pp. 027001
Author(s):  
Yang Cui ◽  
Taiki Takamatsu ◽  
Koichi Shimizu ◽  
Takeo Miyake

Abstract As for the diagnosis and treatment of eye diseases, an ideal fundus imaging system is expected to be portability, low cost, and high resolution. Here, we demonstrate a non-mydriatic near-infrared fundus imaging system with light illumination from an electronic contact lens (E-lens). The E-lens can illuminate the retinal and choroidal structures for capturing the fundus images when voltage is applied wirelessly to the lens. And we also reconstruct the images with a depth-dependent point-spread function to suppress the scattering effect that eventually visualizes the clear fundus images.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 471
Author(s):  
Hoibin Jeong ◽  
Song-Rae Kim ◽  
Yujung Kang ◽  
Huisu Kim ◽  
Seo-Young Kim ◽  
...  

Tumor angiogenesis is enhanced in all types of tumors to supply oxygen and nutrients for their growth and metastasis. With the development of anti-angiogenic drugs, the importance of technology that closely monitors tumor angiogenesis has also been emerging. However, to date, the technology for observing blood vessels requires specialized skills with expensive equipment, thereby limiting its applicability only to the laboratory setting. Here, we used a preclinical optical imaging system for small animals and, for the first time, observed, in real time, the entire process of blood vessel development in tumor-bearing mice injected with indocyanine green. Time-lapse sequential imaging revealed blood vessel volume and blood flow dynamics on a microscopic scale. Upon analyzing fluorescence dynamics at each stage of tumor progression, vessel volume and blood flow were found to increase as the tumor developed. Conversely, these vascular parameters decreased when the mice were treated with angiogenesis inhibitors, which suggests that the effects of drugs targeting angiogenesis can be rapidly and easily screened. The results of this study may help evaluate the efficacy of angiogenesis-targeting drugs by facilitating the observation of tumor blood vessels easily in a laboratory unit without large and complex equipment.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Kang Zhang ◽  
Jolene Zheng ◽  
Chenfei Gao ◽  
Diana Thomas ◽  
Xin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document