Efficient and Secure Routing Protocol Based on Artificial Intelligence Algorithms With UAV-Assisted for Vehicular Ad Hoc Networks in Intelligent Transportation Systems

Author(s):  
Hamideh Fatemidokht ◽  
Marjan Kuchaki Rafsanjani ◽  
Brij B. Gupta ◽  
Ching-Hsien Hsu
2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2021 ◽  
Vol 12 (4) ◽  
pp. 1-30
Author(s):  
Zhenchang Xia ◽  
Jia Wu ◽  
Libing Wu ◽  
Yanjiao Chen ◽  
Jian Yang ◽  
...  

Vehicular ad hoc networks ( VANETs ) and the services they support are an essential part of intelligent transportation. Through physical technologies, applications, protocols, and standards, they help to ensure traffic moves efficiently and vehicles operate safely. This article surveys the current state of play in VANETs development. The summarized and classified include the key technologies critical to the field, the resource-management and safety applications needed for smooth operations, the communications and data transmission protocols that support networking, and the theoretical and environmental constructs underpinning research and development, such as graph neural networks and the Internet of Things. Additionally, we identify and discuss several challenges facing VANETs, including poor safety, poor reliability, non-uniform standards, and low intelligence levels. Finally, we touch on hot technologies and techniques, such as reinforcement learning and 5G communications, to provide an outlook for the future of intelligent transportation systems.


2020 ◽  
Vol 48 (4) ◽  
pp. 377-383
Author(s):  
Evangelos Mitsakis ◽  
Iliani Styliani Anapali

In the recent years Intelligent Transportation Systems and associated technologies have progressed significantly, including services based on wireless communications between vehicles (V2V) and infrastructure (V2I). In order to increase the trustworthiness of these communications, and convince drivers to adopt the new technologies, specific security and privacy requirements need to be addressed, using Vehicular Ad Hoc Networks (VANETs). To maintain VANET′s security and eliminate possible attacks, mechanisms are to be developed. In this paper, previous researches are reviewed aiming to provide information concerning matches between an attack and a solution in a VANET environment.


Author(s):  
Kishor N. Tayade, Et. al.

Vehicular Ad hoc Networks is a promising sub-group of MANET. VANET is deployed on the highways, where the vehicles are mobile nodes. Safety and intelligent transportation are important VANET applications that require appropriate communication among vehicles, in particular routing technology. VANETs generally inherit their common features from MANETs where vehicles operate in a collaborative and dispersed way for promoting contact among vehicles and with network infrastructure like the Road Side Units (RSU) for enhanced traffic experience. In view of the fast growth of Intelligent Transportation Systems (ITS), VANETs has attracted considerable interest in this decade. VANET suffer from a major problem of link failure due to dynamic mobility of vehicles. In this paper we proposed a position based routing algorithm to identify stable path, this will improve the routing by decreasing overhead and interrupting the number of links. Link Expiration Time (LET) is used to provide the stable link, the link with the longest LET is considered as the most stable link. The multicast Ad-hoc On-demand Distance Vector (MAODV) is proposed to avoid the link breakages by using a link with longest LET.  Data loss is reduced by avoiding link breakages and enhance throughput by reducing the communication delay.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 76
Author(s):  
Deepak . ◽  
Rajkumar .

Vehicular ad hoc networks is an emerging area for researchers to provide intelligent transportation system to the society. It is due to the wide area of applications of VANETs interest is developed among the people from different countries to be a part of it. Therefore many projects had been started and also presently working to implement VANETs in real world scenario. The main challenge in its implementation is to provide a secure mechanism against the various attacks and threats that have the capability to bring the network performance significantly down. In this paper to overcome different types of authentication based attacks in VANETs an ECDSA based secure routing protocol SE-AODV is proposed with security features incorporated in already existing AODV routing protocol. The performance of SE-AODV is evaluated and compared with original AODV and AODV with black hole attack (BH-AODV). The SE-AODV shows better performance with the parameters used for comparison with the variation in vehicle density, speed of vehicles and simulation time. 


2010 ◽  
Vol 2 (2) ◽  
pp. 62-78 ◽  
Author(s):  
Emmanouil A. Panaousis ◽  
Tipu A. Ramrekha ◽  
Grant P. Millar ◽  
Christos Politis

Author(s):  
Chong Han ◽  
Sami Muhaidat ◽  
Ibrahim Abualhaol ◽  
Mehrdad Dianati ◽  
Rahim Tafazolli

Vehicular Ad-Hoc Networks (VANETs) are a critical component of the Intelligent Transportation Systems (ITS), which involve the applications of advanced information processing, communications, sensing, and controlling technologies in an integrated manner to improve the functionality and the safety of transportation systems, providing drivers with timely information on road and traffic conditions, and achieving smooth traffic flow on the roads. Recently, the security of VANETs has attracted major attention for the possible presence of malicious elements, and the presence of altered messages due to channel errors in transmissions. In order to provide reliable and secure communications, Intrusion Detection Systems (IDSs) can serve as a second defense wall after prevention-based approaches, such as encryption. This chapter first presents the state-of-the-art literature on intrusion detection in VANETs. Next, the detection of illicit wireless transmissions from the physical layer perspective is investigated, assuming the presence of regular ongoing legitimate transmissions. Finally, a novel cooperative intrusion detection scheme from the MAC sub-layer perspective is discussed.


Sign in / Sign up

Export Citation Format

Share Document