Using Reachable Sets for Trajectory Planning of Automated Vehicles

Author(s):  
Stefanie Manzinger ◽  
Christian Pek ◽  
Matthias Althoff
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 88264-88274 ◽  
Author(s):  
Yuxiang Zhang ◽  
Bingzhao Gao ◽  
Lulu Guo ◽  
Hongyan Guo ◽  
Maoyuan Cui

Author(s):  
Huckleberry Febbo ◽  
Paramsothy Jayakumar ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Abstract Safe trajectory planning for high-performance automated vehicles in an environment with both static and moving obstacles is a challenging problem. Part of the challenge is developing a formulation that can be solved in real-time while including the following set of specifications: minimum time-to-goal, a dynamic vehicle model, minimum control effort, both static and moving obstacle avoidance, simultaneous optimization of speed and steering, and a short execution horizon. This paper presents a nonlinear model predictive control-based trajectory planning formulation, tailored for a large, high-speed unmanned ground vehicle, that includes the above set of specifications. The ability to solve this formulation in real-time is evaluated using NLOptControl, an open-source, direct-collocation based, optimal control problem solver in conjunction with the KNITRO nonlinear programming problem solver. The formulation is tested with various sets of the specifications. A parametric study relating execution horizon and obstacle speed indicates that the moving obstacle avoidance specification is not needed for safety when the planner has a small execution horizon and the obstacles are moving slowly. However, a moving obstacle avoidance specification is needed when the obstacles are moving faster, and this specification improves the overall safety without, in most cases, increasing the solve-times. The results indicate that (i) safe trajectory planners for high-performance automated vehicles should include the entire set of specifications mentioned above, unless a static or low-speed environment permits a less comprehensive planner; and (ii) the resulting formulation can be solved in real-time.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Haijian Bai ◽  
Jianfeng Shen ◽  
Liyang Wei ◽  
Zhongxiang Feng

Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC). Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.


Sign in / Sign up

Export Citation Format

Share Document