scholarly journals Developing an Unsupervised Real-time Anomaly Detection Scheme for Time Series with Multi-seasonality

Author(s):  
Wentai Wu ◽  
Ligang He ◽  
Weiwei Lin ◽  
Yi Su ◽  
Yuhua Cui ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3367 ◽  
Author(s):  
Nan Ding ◽  
Huanbo Gao ◽  
Hongyu Bu ◽  
Haoxuan Ma ◽  
Huaiwei Si

Anomaly detection is an important research direction, which takes the real-time information system from different sensors and conditional information sources into consideration. Based on this, we can detect possible anomalies expected of the devices and components. One of the challenges is anomaly detection in multivariate-sensing time-series in this paper. Based on this situation, we propose RADM, a real-time anomaly detection algorithm based on Hierarchical Temporal Memory (HTM) and Bayesian Network (BN). First of all, we use HTM model to evaluate the real-time anomalies of each univariate-sensing time-series. Secondly, a model of anomalous state detection in multivariate-sensing time-series based on Naive Bayesian is designed to analyze the validity of the above time-series. Lastly, considering the real-time monitoring cases of the system states of terminal nodes in Cloud Platform, the effectiveness of the methodology is demonstrated using a simulated example. Extensive simulation results show that using RADM in multivariate-sensing time-series is able to detect more abnormal, and thus can remarkably improve the performance of real-time anomaly detection.


2020 ◽  
Vol 146 (4) ◽  
pp. 04020015 ◽  
Author(s):  
Jinjing Gu ◽  
Zhibin Jiang ◽  
Wei “David” Fan ◽  
Jiameng Wu ◽  
Jingjing Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xuguang Liu

Aiming at the anomaly detection problem in sensor data, traditional algorithms usually only focus on the continuity of single-source data and ignore the spatiotemporal correlation between multisource data, which reduces detection accuracy to a certain extent. Besides, due to the rapid growth of sensor data, centralized cloud computing platforms cannot meet the real-time detection needs of large-scale abnormal data. In order to solve this problem, a real-time detection method for abnormal data of IoT sensors based on edge computing is proposed. Firstly, sensor data is represented as time series; K-nearest neighbor (KNN) algorithm is further used to detect outliers and isolated groups of the data stream in time series. Secondly, an improved DBSCAN (Density Based Spatial Clustering of Applications with Noise) algorithm is proposed by considering spatiotemporal correlation between multisource data. It can be set according to sample characteristics in the window and overcomes the slow convergence problem using global parameters and large samples, then makes full use of data correlation to complete anomaly detection. Moreover, this paper proposes a distributed anomaly detection model for sensor data based on edge computing. It performs data processing on computing resources close to the data source as much as possible, which improves the overall efficiency of data processing. Finally, simulation results show that the proposed method has higher computational efficiency and detection accuracy than traditional methods and has certain feasibility.


2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time; thus, proper treatment can be made possible. With the addition of the Internet of Things in healthcare, real-time data collection and preprocessing for signal analysis has reduced the burden of in-person appointments and decision making on healthcare. Recently, deep learning-based algorithms have been implemented by researchers for the recognition, realization and prediction of diseases by extracting and analyzing important features. In this research, real-time 1-D time series data of on-body noninvasive biomedical sensors were acquired, preprocessed and analysed for anomaly detection. Feature engineered parameters of large and diverse datasets have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring, the implemented system uses wavelet time scattering features for classification and a deep learning-based autoencoder for anomaly detection of time series signals to assist the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of an IoT-based AI-edge healthcare framework using biomedical sensors was presented. This paper also aims to analyse cloud data acquired through biomedical sensors using signal analysis techniques for anomaly detection, and time series classification has been performed for disease prognosis in real time by implementing 24 AI-based techniques to find the most accurate technique for real-time raw signals. The deep learning-based LSTM method based on wavelet time scattering feature extraction has shown a classification test accuracy of 100%. Using wavelet time scattering feature extraction achieved 95% signal reduction to increase the real-time processing speed. In real-time signal anomaly detection, 98% accuracy is achieved using LSTM autoencoders. The average mean absolute error loss of 0.0072 for normal signals and 0.078 is achieved for anomalous signals.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1251 ◽  
Author(s):  
Tsatsral Amarbayasgalan ◽  
Van Huy Pham ◽  
Nipon Theera-Umpon ◽  
Keun Ho Ryu

Automatic anomaly detection for time-series is critical in a variety of real-world domains such as fraud detection, fault diagnosis, and patient monitoring. Current anomaly detection methods detect the remarkably low proportion of the actual abnormalities correctly. Furthermore, most of the datasets do not provide data labels, and require unsupervised approaches. By focusing on these problems, we propose a novel deep learning-based unsupervised anomaly detection approach (RE-ADTS) for time-series data, which can be applicable to batch and real-time anomaly detections. RE-ADTS consists of two modules including the time-series reconstructor and anomaly detector. The time-series reconstructor module uses the autoregressive (AR) model to find an optimal window width and prepares the subsequences for further analysis according to the width. Then, it uses a deep autoencoder (AE) model to learn the data distribution, which is then used to reconstruct a time-series close to the normal. For anomalies, their reconstruction error (RE) was higher than that of the normal data. As a result of this module, RE and compressed representation of the subsequences were estimated. Later, the anomaly detector module defines the corresponding time-series as normal or an anomaly using a RE based anomaly threshold. For batch anomaly detection, the combination of the density-based clustering technique and anomaly threshold is employed. In the case of real-time anomaly detection, only the anomaly threshold is used without the clustering process. We conducted two types of experiments on a total of 52 publicly available time-series benchmark datasets for the batch and real-time anomaly detections. Experimental results show that the proposed RE-ADTS outperformed the state-of-the-art publicly available anomaly detection methods in most cases.


Sign in / Sign up

Export Citation Format

Share Document