Effect of external magnetic field on fluxon dynamics and current voltage characteristics of long Josephson junctions

1983 ◽  
Vol 19 (3) ◽  
pp. 1017-1020 ◽  
Author(s):  
M. Radparvar ◽  
J. Nordman
1995 ◽  
Vol 05 (02) ◽  
pp. 491-505 ◽  
Author(s):  
A.G. MAKSIMOV ◽  
V.I. NEKORKIN ◽  
M.I. RABINOVICH

Soliton dynamics in a perturbed sine-Gordon equation modeling a long Josephson junction is investigated. Solitons are found to exist in both simple and chaotic forms. Soliton synchronization by an alternating magnetic field is analysed. Current-voltage characteristics of Josephson junction are plotted.


2014 ◽  
Vol 554 ◽  
pp. 155-159 ◽  
Author(s):  
Nadia Mahmoudi Khatir ◽  
Zulkurnain Abdul-Malek ◽  
Seyedeh Maryam Banihashemian

Deoxyribonucleic acid (DNA), as the most important molecule in nature, holds promise as a key element of the molecular electronics as its utilization in the synthesis of electronic devices such as micro and nanosensors has increased remarkably during the recent years. Our work is devoted to an experimental study of the electrical resistivity of a gold-DNA-gold (GDG) structure in the presence of a variable external magnetic field. The DNA strands, extracted by the PCR method, were used to fabricate the GDG structures. The resistivity of the structure was found to rise sharply with the magnitude of the exerted magnetic field due to onset and progression of the cyclotron effects in charge carriers. Such a distinct current-voltage signature can possibly be employed for realization of an accurate magnetic sensor.


During last decade, considerable efforts were made to achieve coherent emission from stacks of many Josephson junctions. It is known that strong emission from a junction in the presence of external magnetic field appears at the so-called Fiske steps in the IV-characteristic at voltages which correspond to frequencies of geometrical resonances. However, it is possible to obtain resonant steps in long junctions without external magnetic field. The periodical movement of fluxons is excited due to some disorder in the distribution of critical currents along junctions. The so-called zero-field steps are formed in the IV-curve due to the interaction of fluxons with oscillations of voltage at Josephson frequencies. We investigated numerically IV-characteristics and the dependence of the average square of ac voltage at the end of the stack of two long Josephson junctions on the average voltage. Junctions interacted inductively with each other. We introduced not only the Gaussian distribution of critical currents along junctions but also the Gaussian distribution of coefficients of the interaction between junctions (mutual inductances). Zero-field steps in the IV-characteristic were found at voltages which corresponded to frequencies of in-phase collective modes in the stack as well as to frequencies of uncoupled junctions. Zero-field steps appeared in the hysteretic region of the IV-curve. There appeared also jumps of voltage from the resistive branch to the zero-field step. We showed that there existed distributions of mutual inductances along junctions which provided jumps to voltages at which the average square of ac voltage at the end of the stack (which is proportional to power of emission) was larger than that for the stack with the uniform distribution of mutual inductances.


1996 ◽  
Vol 10 (22) ◽  
pp. 1095-1102 ◽  
Author(s):  
A.K. CHATTAH ◽  
C.B. BRIOZZO ◽  
O. OSENDA ◽  
M.O. CÁCERES

We analyze the influence of thermal noise on the Shapiro steps appearing in the current-voltage characteristics of Josephson junctions. We solve the Fokker-Planck equation describing the system by a path integral method in the steepest-descent approximation, previously applied to the stochastic resonance problem. We obtain the Asymptotic Time-Periodic Distribution Pas(ϕ, t), where ϕ∈[0, 2π] and compute from it the voltage [Formula: see text], constructing the I-V characteristics. We find a defined “softening” of the Shapiro steps as temperature increases, for values of the system parameters in the experimentally accessible range.


Sign in / Sign up

Export Citation Format

Share Document