SOLITON TRAINS AND I–V CHARACTERISTICS OF LONG JOSEPHSON JUNCTIONS

1995 ◽  
Vol 05 (02) ◽  
pp. 491-505 ◽  
Author(s):  
A.G. MAKSIMOV ◽  
V.I. NEKORKIN ◽  
M.I. RABINOVICH

Soliton dynamics in a perturbed sine-Gordon equation modeling a long Josephson junction is investigated. Solitons are found to exist in both simple and chaotic forms. Soliton synchronization by an alternating magnetic field is analysed. Current-voltage characteristics of Josephson junction are plotted.

2018 ◽  
Vol 185 ◽  
pp. 08005
Author(s):  
Alexander Sergeev ◽  
Igor Golev ◽  
Victoria Gvozdevskaya ◽  
Anastasia Barkalova

The nonlinear response of the superconductor of the Bi-Sr-Ca-Cu-O system in the temperature range of the superconducting transition under the action of a harmonic alternating magnetic field is experimentally studied. For multiphase superconductors having in their volume regions with distinct critical temperatures, the effect of odd harmonics in the response signal is observed. The contribution of crystallites and the system of weak bonds between the crystallites in the nonlinear response is singled out. It was found that the nonlinear properties of the investigated samples in the resistive state are determined mainly by the nonlinear current-voltage characteristics of the system of weak bonds between the crystallites.


1998 ◽  
Vol 09 (02) ◽  
pp. 301-323 ◽  
Author(s):  
Jean-Guy Caputo ◽  
Nikos Flytzanis ◽  
Yuri Gaididei ◽  
Irene Moulitsa ◽  
Emmanuel Vavalis

We introduce a new type of splitting method for semilinear partial differential equations. The method is analyzed in detail for the case of the two-dimensional static sine-Gordon equation describing a large area Josephson junction with overlap current feed and external magnetic field. The solution is separated into an explicit term that satisfies the one-dimensional sine-Gordon equation in the y-direction with boundary conditions determined by the bias current and a residual which is expanded using modes in the y-direction, the coefficients of which satisfy ordinary differential equations in x with boundary conditions given by the magnetic field. We show by direct comparison with a two-dimensional solution that this method converges and that it is an efficient way of solving the problem. The convergence of the y expansion for the residual is compared for Fourier cosine modes and the normal modes associated to the static one-dimensional sine-Gordon equation and we find a faster convergence for the latter. Even for such large widths as w=10 two such modes are enough to give accurate results.


2011 ◽  
Vol 3 (3) ◽  
pp. 389-398 ◽  
Author(s):  
P. Kh. Atanasova ◽  
T. L. Boyadjiev ◽  
Yu. M. Shukrinov ◽  
E. V. Zemlyanaya

1996 ◽  
Vol 10 (22) ◽  
pp. 1095-1102 ◽  
Author(s):  
A.K. CHATTAH ◽  
C.B. BRIOZZO ◽  
O. OSENDA ◽  
M.O. CÁCERES

We analyze the influence of thermal noise on the Shapiro steps appearing in the current-voltage characteristics of Josephson junctions. We solve the Fokker-Planck equation describing the system by a path integral method in the steepest-descent approximation, previously applied to the stochastic resonance problem. We obtain the Asymptotic Time-Periodic Distribution Pas(ϕ, t), where ϕ∈[0, 2π] and compute from it the voltage [Formula: see text], constructing the I-V characteristics. We find a defined “softening” of the Shapiro steps as temperature increases, for values of the system parameters in the experimentally accessible range.


Sign in / Sign up

Export Citation Format

Share Document