Magnetic bubble logic component library

1986 ◽  
Vol 22 (4) ◽  
pp. 217-238
Author(s):  
Jyh-Ping Hwang ◽  
Jiin-Chuan Wu ◽  
F. Humphrey
Author(s):  
J. K. Maurin

Conductor, resistor, and dielectric patterns of microelectronic device are usually defined by exposure of a photosensitive material through a mask onto the device with subsequent development of the photoresist and chemical removal of the undesired materials. Standard optical techniques are limited and electron lithography provides several important advantages, including the ability to expose features as small as 1,000 Å, and direct exposure on the wafer with no intermediate mask. This presentation is intended to report how electron lithography was used to define the permalloy patterns which are used to manipulate domains in magnetic bubble memory devices.The electron optical system used in our experiment as shown in Fig. 1 consisted of a high resolution scanning electron microscope, a computer, and a high precision motorized specimen stage. The computer is appropriately interfaced to address the electron beam, control beam exposure, and move the specimen stage.


1976 ◽  
Author(s):  
Millard G. Mier ◽  
Hilmer W. S. Swenson ◽  
P. E. Wigen

Author(s):  
Peng Lu ◽  
Xiao Cong ◽  
Dongdai Zhou

Nowadays, E-learning system has been widely applied to practical teaching. It was favored by people for its characterized course arrangement and flexible learning schedule. However, the system does have some problems in the process of application such as the functions of single software are not diversified enough to satisfy the requirements in teaching completely. In order to cater more applications in the teaching process, it is necessary to integrate functions from different systems. But the difference in developing techniques and the inflexibility in design makes it difficult to implement. The major reason of these problems is the lack of fine software architecture. In this article, we build domain model and component model of E-learning system and components integration method on the basis of WebService. And we proposed an abstract framework of E-learning which could express the semantic relationship among components and realize high level reusable on the basis of informationized teaching mode. On this foundation, we form an E-learning oriented layering software architecture contain component library layer, application framework layer and application layer. Moreover, the system contains layer division multiplexing and was not built upon developing language and tools. Under the help of the software architecture, we could build characterized E-learning system flexibly like building blocks through framework selection, component assembling and replacement. In addition, we exemplify how to build concrete E-learning system on the basis of this software architecture.


2008 ◽  
Vol 93 (21) ◽  
pp. 214102 ◽  
Author(s):  
Pietro Tierno ◽  
Alejandro Soba ◽  
Tom H. Johansen ◽  
Francesc Sagués
Keyword(s):  

2011 ◽  
Vol 99 (4) ◽  
pp. 042503 ◽  
Author(s):  
S. R. Bakaul ◽  
W. Lin ◽  
T. Wu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document