Water Dispersible Fe/Fe-Oxide Core-Shell Structured Nanoparticles for Potential Biomedical Applications

2009 ◽  
Vol 45 (10) ◽  
pp. 4877-4879 ◽  
Author(s):  
H. Khurshid ◽  
S. Balakrishnan ◽  
L. Colak ◽  
M.J. Bonder ◽  
G.C. Hadjipanayis
2020 ◽  
Author(s):  
Morteza Javadi ◽  
Van A. Ortega ◽  
Alyxandra Thiessen ◽  
Maryam Aghajamali ◽  
Muhammad Amirul Islam ◽  
...  

<p>The design and fabrication of Si-based multi-functional nanomaterials for biological and biomedical applications is an active area of research. The potential benefits of using Si-based nanomaterials are not only due to their size/surface-dependent optical responses but also the high biocompatibility and low-toxicity of silicon itself. Combining these characteristics with the magnetic properties of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) multiplies the options available for real-world applications. In the current study, biocompatible magnetofluorescent nano-hybrids have been prepared by covalent linking of Si quantum dots to water-dispersible Fe<sub>3</sub>O<sub>4</sub> NPs <i>via</i> dicyclohexylcarbodiimide (DCC) coupling. We explore some of the properties of these magnetofluorescent nano-hybrids as well as evaluate uptake, the potential for cellular toxicity, and the induction of acute cellular oxidative stress in a mast cells-like cell line (RBL-2H3) by heat induction through short-term radio frequency modulation (10 min @ 156 kHz, 500 A). We found that the NPs were internalized readily by the cells and also penetrated the nuclear membrane. Radio frequency activated nano-hybrids also had significantly increased cell death where > 50% of the RBL-2H3 cells were found to be in an apoptotic or necrotic state, and that this was attributable to increased triggering of oxidative cell stress mechanisms. </p>


2021 ◽  
Author(s):  
Yingxue Tu ◽  
Caifen Lei ◽  
Fei Deng ◽  
Yiang Chen ◽  
Ying Wang ◽  
...  

Metal organic frameworks (MOFs) have the potential to boost the undervalued biomedical applications of metal ions. Such endeavor has been hindered by the challenge of how to avoid the (cyto)toxicity...


2002 ◽  
Vol 91 (10) ◽  
pp. 8593 ◽  
Author(s):  
L. Savini ◽  
E. Bonetti ◽  
L. Del Bianco ◽  
L. Pasquini ◽  
S. Signoretti ◽  
...  
Keyword(s):  

DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 29-35
Author(s):  
Claudia Milena Bedoya-Hincapié ◽  
Elisabeth Restrepo-Parra ◽  
Luis Demetrio López-Carreño

The potential of nanotechnology in the biomedical field has been crucial for contributing to the possibility of efficiently meeting present necessities with novel materials. Over the last few decades, nanostructures with a core/shell structure have attracted significant attention because of the possibility of changing their physical properties by varying their chemistry and geometry. These structures have become relevant in targeted therapy (drug delivery and treatments to complement chemotherapy and radiotherapy), imaging and in the stimulation of cellular functions. Thus in this paper the current development of core/shell nanostructures is reviewed, emphasizing the physical properties of those that have been proposed as potentially having biomedical applications, which are based in a magnetic behavior or in a mixture of magnetic and electric (multiferroic) phenomena.


2007 ◽  
Vol 43 (6) ◽  
pp. 2445-2447 ◽  
Author(s):  
Po-Chieh Chiang ◽  
Dung-Shing Hung ◽  
Jeng-Wen Wang ◽  
Chih-Sung Ho ◽  
Yeong-Der Yao

Sign in / Sign up

Export Citation Format

Share Document