biomedical field
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 241)

H-INDEX

31
(FIVE YEARS 12)

2022 ◽  
Vol 3 (1) ◽  
pp. 83-94
Author(s):  
Esther Somanader ◽  
Roshini Sreenivas ◽  
Golnoosh Siavash ◽  
Nicole Rodriguez ◽  
Tingxiao Gao ◽  
...  

Didymosphenia geminata is a species of freshwater diatom that is known as invasive and is propagating quickly around the world. While invasive species are generally considered a nuisance, this paper attempts to find useful applications for D. geminata in the biomedical field and wastewater remediation. Here, we highlight the polysaccharide-based stalks of D. geminata that enable versatile potential applications and uses as a biopolymer, in drug delivery and wound healing, and as biocompatible scaffolding in cell adhesion and proliferation. Furthermore, this review focuses on how the polysaccharide nature of stalks and their metal-adsorption capacity allows them to have excellent wastewater remediation potential. This work also aims to assess the economic impact of D. geminata, as an invasive species, on its immediate environment. Potential government measures and legislation are recommended to prevent the spread of D. geminata, emphasizing the importance of education and collaboration between stakeholders.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 186
Author(s):  
Adelina-Gabriela Niculescu ◽  
Alexandru Mihai Grumezescu

Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 182 ◽  
Author(s):  
R. A. Ilyas ◽  
M. Y. M. Zuhri ◽  
Mohd Nor Faiz Norrrahim ◽  
Muhammad Syukri Mohamad Misenan ◽  
Mohd Azwan Jenol ◽  
...  

Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.


2022 ◽  
Vol 174 ◽  
pp. 121218
Author(s):  
Kun Lu ◽  
Guancan Yang ◽  
Xue Wang
Keyword(s):  

Author(s):  
Sonali Jana ◽  
Piyali Das ◽  
Joydeep Mukherjee ◽  
Dipak Banerjee ◽  
Prabal Ranjan Ghosh ◽  
...  

Recent developments in the biomedical arena have led to the progress of several biomaterials by utilizing bioactive molecules from biological wastes arising from the fish, meat, and poultry industries. These...


2022 ◽  
pp. 517-537
Author(s):  
Dr.Sumira Malik ◽  
Shristi Kishore ◽  
Shradha A. Kumari ◽  
Anjali Kumari

The area of healthcare needs new innovative methods and tools for improvisation and to impart better efficiencies. Nanoemulsions are pharmaceutical formulations containing nanometre-sized particles used for controlled and systemic delivery of bioactive pharmaceuticals. Various advantageous properties of nanoemulsions such as the presence of hydrophobic core region, higher stability, and smaller size have made them useful to a large extent in the biomedical field. They have been employed in transdermal drug delivery, intranasal drug delivery, pulmonary drug delivery, parenteral drug delivery, and improvised delivery of hydrophobic drugs. This chapter aims to discuss various applications of nanoemulsions in healthcare including cosmetics, antimicrobials, vaccine delivery, targeted drug delivery, gene delivery, cancer therapy, and many more in detail.


Author(s):  
Yishen Liu ◽  
Qingrong Chen ◽  
Yidan Sun ◽  
Luojia Chen ◽  
Yuncong Yuan ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 2
Author(s):  
Inês Miranda ◽  
Andrews Souza ◽  
Paulo Sousa ◽  
João Ribeiro ◽  
Elisabete M. S. Castanheira ◽  
...  

Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the properties of PDMS and some of its commonly used treatments, aiming at the suitability to those fields’ needs, are presented. Applications such as microchips in the biomedical field, replication of cardiovascular flow and medical implants are also reviewed.


Author(s):  
Shivangi Abrol ◽  
Hitesh Kumar Dewangan

Chitosan is a polysaccharide and is derived from chitin. Chitosan every now and then referred to as a soluble chitin. chitosan is strongly basic polysaccharide. chitosan shows physiochemical and biological properties. This review presents the common source for chitosan manufacturing that is crabs and shrimp. According to researchers it is just a fat inhibitor. some of the application of chitosan in pharmaceutics/drug delivery and in biomedical field are also highlighted. Chitosan act as a diluent, as mucoadhesive excipient, as permeation enhancer, in vaccines delivery, as parenteral delivery, chitosan as food additive, cosmetics industry. chitosan also has a number of medicinal benefits. Chitosan is employed in a variety of applications because it is soluble in acidic aqueous conditions (food, cosmetics, biomedical and pharmaceutical applications). We give a quick overview of the chemical modifications of chitosan, a field in which a number of syntheses have been proposed but not yet realised on a large scale. This review focuses on current articles on these materials' high-value-added applications in medicine and cosmetics.


2021 ◽  
Vol 8 (12) ◽  
pp. 224
Author(s):  
Diego Omar Sanchez Ramirez ◽  
Iriczalli Cruz-Maya ◽  
Claudia Vineis ◽  
Vincenzo Guarino ◽  
Cinzia Tonetti ◽  
...  

Protein-based nanofibres are commonly used in the biomedical field to support cell growth. For this study, the cell viability of wool keratin-based nanofibres was tested. Membranes were obtained by electrospinning using formic acid, hexafluoroisopropanol, and water as solvents. For aqueous solutions, polyethylene oxide blended with keratin was employed, and their use to support in vitro cell interactions was also validated. Morphological characterization and secondary structure quantification were carried out by SEM and FTIR analyses. Although formic acid produced the best nanofibres from a morphological point of view, the results showed a better response to cell proliferation after 14 days in the case of fibres from hexafluoroisopropanol solution. Polyethylene oxide in keratin nanofibres was demonstrated, over time, to influence in vitro cell interactions, modifying membranes-wettability and reducing the contact between keratin chains and water molecules, respectively.


Sign in / Sign up

Export Citation Format

Share Document