Adaptive Mesh Generation Method Utilizing Magnetic Flux Lines in Two-Dimensional Finite Element Analysis

2012 ◽  
Vol 48 (2) ◽  
pp. 527-530 ◽  
Author(s):  
Shinya Matsutomo ◽  
So Noguchi ◽  
Hideo Yamashita
Author(s):  
Ki-Hoon Shin

Finite Element Analysis (FEA) is an important step for the design of structures or components formed by heterogeneous objects such as multi-material objects, Functionally Graded Materials (FGMs), etc. The main objective of the FEA-based design of heterogeneous objects is to simultaneously optimize both geometric shapes and material distributions over the design domain (e.g., Homogenization Design Method). However, the accuracy of the FEA-based design wholly depends on the quality of the finite element models generated. Therefore, there exists an increasing need for developing a new mesh generation algorithm adaptive to both geometric complexity and material distributions. In this paper, a two-dimensional adaptive mesh generation algorithm is proposed based on the discretization by which continuous material variation inside an object is converted into step-wise variation. The proposed algorithm first creates nodes on the iso-material contours of the discretized solid models. Triangular meshes are then generated inside each iso-material region formed by iso-material contours. Current implementation considers two-dimensional problems and thus needs to be extended to include three-dimensional problems in the near future.


Author(s):  
Yi-Cheng Chen ◽  
Yun-Hao Cheng ◽  
Jui-Tang Tseng ◽  
Kun-Ju Hsieh

Abstract The mathematical model of a strain wave gear (SWG) composed of a flexspline (FS), an elliptical wave generator (WG), and a circular spline (CS) was developed and the performance was simulated by two-dimensional (2-D) finite element analysis. A rack cutter exhibiting a double-circular-arc normal section was utilized to generate the FS, and the conjugate CS was also developed based on the theory of gearing and enveloping equation. Computer program developed in Visual C++ was completed for the geometry and 2-D mesh generation. The performances as well as the rotational motion of the SWG with double-circular-arc profile were simulated and investigated by 2-D finite element analysis.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


Sign in / Sign up

Export Citation Format

Share Document