r-Adaptive mesh generation for shell finite element analysis

2004 ◽  
Vol 199 (1) ◽  
pp. 291-316 ◽  
Author(s):  
Maenghyo Cho ◽  
Seongki Jun
Author(s):  
Ki-Hoon Shin

Finite Element Analysis (FEA) is an important step for the design of structures or components formed by heterogeneous objects such as multi-material objects, Functionally Graded Materials (FGMs), etc. The main objective of the FEA-based design of heterogeneous objects is to simultaneously optimize both geometric shapes and material distributions over the design domain (e.g., Homogenization Design Method). However, the accuracy of the FEA-based design wholly depends on the quality of the finite element models generated. Therefore, there exists an increasing need for developing a new mesh generation algorithm adaptive to both geometric complexity and material distributions. In this paper, a two-dimensional adaptive mesh generation algorithm is proposed based on the discretization by which continuous material variation inside an object is converted into step-wise variation. The proposed algorithm first creates nodes on the iso-material contours of the discretized solid models. Triangular meshes are then generated inside each iso-material region formed by iso-material contours. Current implementation considers two-dimensional problems and thus needs to be extended to include three-dimensional problems in the near future.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


2006 ◽  
Vol 326-328 ◽  
pp. 851-854 ◽  
Author(s):  
Yoon Hyuk Kim ◽  
Chang Hwan Byun ◽  
Taek Yul Oh

In this study, the change of the natural frequencies in mouse femurs with osteoporosis was investigated based on a vibration test and a finite element. Three groups of the femurs include the osteoporotic group, the treated group and the normal group. In the vibration test, the natural frequencies were measured by the mobility test. For the finite element analysis, the micro finite element model of the femur was reconstructed using the Micro-CT images and the Voxel mesh generation algorithm. From the results, the averaged natural frequencies in the osteoporotic group were the highest, followed by those in the treated group. The finite element models were validated within 15% errors by comparing the natural frequencies in the finite element analysis with those in the vibration test. The developed Micro-CT system, the Voxel mesh generation algorithm, the presented finite element analysis, and vibration test could be useful for the investigation of the structural change of the bone tissue, and the diagnosis and the treatment in the osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document