Research on Calculating Eddy-Current Losses in Power Transformer Tank Walls Using Finite-Element Method Combined With Analytical Method

2016 ◽  
Vol 52 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Xiuke Yan ◽  
Xiangdong Yu ◽  
Min Shen ◽  
Dexin Xie ◽  
Baodong Bai
2014 ◽  
Vol 63 (1) ◽  
pp. 107-114
Author(s):  
Dariusz Koteras

Abstract The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained


2012 ◽  
Vol 229-231 ◽  
pp. 884-887
Author(s):  
Bao Dong Bai ◽  
Ying Ying Gao ◽  
Jia Yin Wang

This paper mainly researches the eddy current losses of transformer shielding coil by adopting for analytical method. This method calculates the conductor’s boundary conditions directly by using the analytical solution of the leakage magnetic field, which is generated into the conductor eddy current equation for the analytical formula, then compared the analytical method with the finite element method to fix the analytical formula, the relevant theories are applied to analyze the results of using two different shielding to reduce the losses and find the effectively measures.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1174
Author(s):  
Marek Gołębiowski ◽  
Lesław Gołębiowski ◽  
Andrzej Smoleń ◽  
Damian Mazur

The following article presents a computation procedure that enables us to simulate the dynamic states of electric machines with a laminated magnetic core, with direct consideration of the eddy current losses. The presented approach enables a significant reduction of the simulation process computational complexity. The verification of the obtained data correctness is based on a detailed balance of energy and power in the investigated system. The correctness of the obtained results was also confirmed by comparing them with the results included in norms that describe the losses in laminated sheets. The presented approach is based on expressing the equivalent permeability of transformer metal sheets by using RC or RL circuits. The impedances of these circuits are treated as the transmittance of Infinite Impulse Response filters (IIR) of the Laplace s variable. In this form they are implemented in direct calculations of the dynamics of electric machines based on field-circuital models, using the Finite Element Method (FEM). In this way, we present the method of including eddy current losses in laminated metal circuits of chokes or transformers, during calculations using the finite element method, with the IIR filter in the domain of the variable s of the Laplace transform. Eddy current losses are directly included in the calculation process. Therefore, they have a direct impact on the transient state waveforms. However, the use of the Laplace variable s caused an excessive increase in the number of state variables, and the overall computational efficiency of the presented method is sufficiently low so as to be used in the simulation process of electrical machine dynamic states with a relatively large number of elements in the FE Model.


Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


Sign in / Sign up

Export Citation Format

Share Document