Dual Fast Marching Tree Algorithm for Human-like Motion Planning of Anthropomorphic Arms with Task Constraints

Author(s):  
Jing Xia ◽  
Zainan Jiang ◽  
Zhang Hao ◽  
Zhu Rongjun ◽  
Tian Haibo
2018 ◽  
Vol 10 (3) ◽  
Author(s):  
Audelia G. Dharmawan ◽  
Shaohui Foong ◽  
Gim Song Soh

Real-time motion planning of robots in a dynamic environment requires a continuous evaluation of the determined trajectory so as to avoid moving obstacles. This is even more challenging when the robot also needs to perform a task optimally while avoiding the obstacles due to the limited time available for generating a new collision-free path. In this paper, we propose the sequential expanded Lagrangian homotopy (SELH) approach, which is capable of determining the globally optimal robot's motion sequentially while satisfying the task constraints. Through numerical simulations, we demonstrate the capabilities of the approach by planning an optimal motion of a redundant mobile manipulator performing a complex trajectory. Comparison against existing optimal motion planning approaches, such as genetic algorithm (GA) and neural network (NN), shows that SELH is able to perform the planning at a faster rate. The considerably short computational time opens up an opportunity to apply this method in real time; and since the robot's motion is planned sequentially, it can also be adjusted to accommodate for dynamically changing constraints such as moving obstacles.


Author(s):  
Wei-Ye Zhao ◽  
Suqin He ◽  
Chengtao Wen ◽  
Changliu Liu

Abstract Applying intelligent robot arms in dynamic uncertain environments (i.e., flexible production lines) remains challenging, which requires efficient algorithms for real time trajectory generation. The motion planning problem for robot trajectory generation is highly nonlinear and nonconvex, which usually comes with collision avoidance constraints, robot kinematics and dynamics constraints, and task constraints (e.g., following a Cartesian trajectory defined on a surface and maintain the contact). The nonlinear and nonconvex planning problem is computationally expensive to solve, which limits the application of robot arms in the real world. In this paper, for redundant robot arm planning problems with complex constraints, we present a motion planning method using iterative convex optimization that can efficiently handle the constraints and generate optimal trajectories in real time. The proposed planner guarantees the satisfaction of the contact-rich task constraints and avoids collision in confined environments. Extensive experiments on trajectory generation for weld grinding are performed to demonstrate the effectiveness of the proposed method and its applicability in advanced robotic manufacturing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yizhou Liu ◽  
Fusheng Zha ◽  
Mantian Li ◽  
Wei Guo ◽  
Yunxin Jia ◽  
...  

Many algorithms in probabilistic sampling-based motion planning have been proposed to create a path for a robot in an environment with obstacles. Due to the randomness of sampling, they can efficiently compute the collision-free paths made of segments lying in the configuration space with probabilistic completeness. However, this property also makes the trajectories have some unnecessary redundant or jerky motions, which need to be optimized. For most robotics applications, the trajectories should be short, smooth and keep away from obstacles. This paper proposes a new trajectory optimization technique which transforms a polygon collision-free path into a smooth path, and can deal with trajectories which contain various task constraints. The technique removes redundant motions by quadratic programming in the parameter space of trajectory, and converts collision avoidance conditions to linear constraints to ensure absolute safety of trajectories. Furthermore, the technique uses a projection operator to realize the optimization of trajectories which are subject to some hard kinematic constraints, like keeping a glass of water upright or coordinating operation with dual robots. The experimental results proved the feasibility and effectiveness of the proposed method, when it is compared with other trajectory optimization methods.


Author(s):  
Lukas De Sanctis ◽  
Santiago Garrido ◽  
Luis Moreno ◽  
Dolores Blanco

2020 ◽  
Vol 5 (4) ◽  
pp. 6294-6301
Author(s):  
Massimo Cefalo ◽  
Paolo Ferrari ◽  
Giuseppe Oriolo

Sign in / Sign up

Export Citation Format

Share Document