Multi-Phase-Based Optimal Slip Ratio Tracking Control of Aircraft Antiskid Braking System via Second-Order Sliding Mode Approach

Author(s):  
Chenglong Du ◽  
Fanbiao Li ◽  
Chunhua Yang ◽  
Yang Shi ◽  
Liqing Liao ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Xin Zhao ◽  
Tian Wu ◽  
Gang Li

For spacecraft attitude tracking system, there exists the chattering phenomenon. In this paper, the spacecraft motion is decomposed into three-channel subsystems, and a second-order sliding mode control is proposed. This method has been proved to have good convergence and robustness. Combined with the proposed sliding surface, the three-channel controllers are designed. The control performance is confirmed by the simulation results, the approaching process is improved effectively, and a smooth transition is achieved without overshoot and buffeting.


Author(s):  
Mien Van ◽  
Hee-Jun Kang ◽  
Kyoo-Sik Shin

In this paper, a robust output feedback tracking control scheme for uncertain robot manipulators with only position measurements is investigated. First, a quasi-continuous second-order sliding mode (QC2S)-based exact differentiator and super-twisting second-order sliding mode (STW2S) controllers are designed to guarantee finite time convergence. Although the QC2S produces continuous control and less chattering than that of a conventional sliding mode controller and other high-order sliding mode controllers, a large amount of chattering exists when the sliding manifold is defined by the equation [Formula: see text]. To decrease the chattering, an uncertainty observer is used to compensate for the uncertainty effects, and this controller may possess a smaller switching gain. Compared to the QC2S controller, the STW2S has less chattering and tracking error when the system remains on the sliding manifold [Formula: see text]. Therefore, to further eliminate the chattering and obtain a faster transient response and higher tracking precision, we develop a quasi-continuous super-twisting second-order sliding mode controller, which integrates both the merits of QC2S and STW2S controllers. The stability and convergence of the proposed scheme are theoretically demonstrated. Finally, computer simulation results for a PUMA560 robot comparing with conventional QC2S and STW2S controllers are shown to verify the effectiveness of the proposed algorithm.


2014 ◽  
Vol 47 (3) ◽  
pp. 3827-3832 ◽  
Author(s):  
Ebrahim Samer El youssef ◽  
Nardênio Almeida Martins ◽  
Edson Roberto De Pieri ◽  
Ubirajara Franco Moreno

Sign in / Sign up

Export Citation Format

Share Document