A Differential Flatness-Based Approach for Autonomous Helicopter Shipboard Landing

Author(s):  
Zhao Di ◽  
Sandipan TE Mishra ◽  
Farhan Gandhi
Author(s):  
Phatiphat Thounthong ◽  
Pongsiri Mungporn ◽  
Damien Guilbert ◽  
Noureddine Takorabet ◽  
Serge Pierfederici ◽  
...  

2020 ◽  
Vol 68 (7) ◽  
pp. 529-540
Author(s):  
Tobias Kleinert ◽  
Frederik Zahn ◽  
Veit Hagenmeyer

AbstractThe class of hybrid systems describes most technical systems in great detail. However, the respective models and their behavior tend to be very complex. Recently, a new subclass of hybrid automata has been introduced, the Flat Hybrid Automata (FHA) that relies on the concepts of differential flatness for the continuous parts, and strongly connected automaton graphs for the discrete event part, in order to deal with the complexity from a design perspective. Therefore, we introduce in the present paper an approach to reduce the automaton graph of an FHA in a systematic way by removing edges from the adjacency matrix. The main contribution of the paper is twofold: Firstly, based on practical considerations we develop a heuristic algorithm to reduce the automaton graph. Secondly, we present possible ways to include knowledge about the system in the reduction.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2500 ◽  
Author(s):  
Eduardo Hernández-Márquez ◽  
Carlos Avila-Rea ◽  
José García-Sánchez ◽  
Ramón Silva-Ortigoza ◽  
Gilberto Silva-Ortigoza ◽  
...  

This paper has two aims. The first is to develop a robust hierarchical tracking controller for the DC/DC Buck-Boost–inverter–DC motor system. This controller considers a high level control for the inverter–DC motor subsystems and a low level control for the DC/DC Buck-Boost converter subsystem. Such controls solve the tracking task associated with the angular velocity of the motor shaft and the output voltage of the converter, respectively, via the differential flatness approach. The second aim is to present a comparison of the robust hierarchical controller to a passive controller. This, with the purpose of showing that performance achieved with the hierarchical controller proposed in this paper, is better than the one achieved with the passive controller. Both controllers are experimentally implemented on a prototype of the DC/DC Buck-Boost–inverter–DC motor system by using Matlab-Simulink along with the DS1104 board from dSPACE. According to experimental results, the proposal in the present paper achieves a better performance than the passive controller.


Sign in / Sign up

Export Citation Format

Share Document