scholarly journals Substrate-Integrated Defected Ground Structure for Single- and Dual-Band Bandpass Filters With Wide Stopband and Low Radiation Loss

Author(s):  
Deshan Tang ◽  
Changxuan Han ◽  
Zhixian Deng ◽  
Huizhen Jenny Qian ◽  
Xun Luo
Author(s):  
Jaswinder Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In the present work, a novel multistrip monopole antenna fed by a cross-shaped stripline comprising one vertical and two horizontal strips has been proposed for wireless local area network (WLAN)/Industrial, Scientific, and Medical band (ISM)/International Mobile Telecommunication (IMT)/BLUETOOTH/Worldwide Interoperability for Microwave Access (WiMAX) applications. The designed antenna has a small overall size of 20 × 30 mm2. The goal of this paper is to use defected ground structure (DGS) in the proposed antenna design to achieve dual-band operation with appreciable impedance bandwidth at the two operating modes satisfying several communication standards simultaneously. The antenna was simulated using Computer Simulation Technology Microwave Studio (CST MWS) V9 based on the finite integration technique (FIT) with perfect boundary approximation. Finally, the proposed antenna was fabricated and some performance parameters were measured to validate against simulation results. The design procedure, parametric analysis, simulation results along with measurements for this multistrip monopole antenna using DGS operating simultaneously at WLAN (2.4/5.8 GHz), IMT (2.35 GHz), BLUETOOTH (2.45 GHz), and WiMAX (5.5 GHz) are presented.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2015 ◽  
Vol 9 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Amanpreet Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In this paper, a three layered stacked circularly polarized rectangular dual band microstrip antenna with a defected ground structure (DGS) and a feed network with stub (showing dual wideband characteristic) is designed, fabricated, and tested for WLAN, Zig bee, Wi-Max, and IMT band applications. The proposed antenna is fabricated on an FR4 substrate with dielectric constant (εr) of 4.4; tanδ of 0.0024 and a height of 1.57 mm.The antenna has a surface area of 4.8 × 4.1 cm2and a total height of 5.1 mm. The designed antenna covers two wireless bands from 2.39 to 2.64GHz and 3.39–3.76 GHZ with impedance bandwidths (VSWR < 2) of 250 MHz (9% bandwidth centered at 2.515 GHz) and 370 MHz (10% bandwidth centered at 3.57 GHz), respectively. This antenna is capable of covering IEEE 802.11b/g/n standards of WLAN from 2.4 to 2.485 GHz, bluetooth applications from 2.4 to 2.483 GHz, ZigBee applications from 2.4 to 2.485 GHz, IEEE 802.16/ Wi-MaX applications from 3.4 to 3.69 GHz and international mobile telecommunications (IMT) band from 3.4 to 3.6 GHz. As the antenna is circularly polarized, the misalignment of the receiver with transmitter does not affect the performance of the system. The antenna designing was done using CST MWS V'10 and the prototype of the designed antenna was tested for the validation of S11(dB) and gain results against the simulated ones experimentally. The proposed antenna shows a gain of 4.08 dBi at 2.5 GHz and a gain of 5.024 dBi at 3.51 GHz.


Sign in / Sign up

Export Citation Format

Share Document