A Novel Feature Selection Methodology for Automated Inspection Systems

2009 ◽  
Vol 31 (7) ◽  
pp. 1338-1344 ◽  
Author(s):  
H.C. Garcia ◽  
J.R. Villalobos ◽  
R. Pan ◽  
G.C. Runger
2021 ◽  
Author(s):  
ADRIANA W. (AGNES) BLOM-SCHIEBER ◽  
WEI GUO ◽  
EKTA SAMANI ◽  
ASHIS BANERJEE

A machine learning approach to improve the detection of tow ends for automated inspection of fiber-placed composites is presented. Automated inspection systems for automated fiber placement processes have been introduced to reduce the time it takes to inspect plies after they are laid down. The existing system uses image data from ply boundaries and a contrast-based algorithm to locate the tow ends in these images. This system fails to recognize approximately 10% of the tow ends, which are then presented to the operator for manual review, taking up precious time in the production process. An improved tow end detection algorithm based on machine learning is developed through a research project with the Boeing Advanced Research Center (BARC) at the University of Washington. This presentation shows the preprocessing, neural network and post‐processing steps implemented in the algorithm, and the results achieved with the machine learning algorithm. The machine learning algorithm resulted in a 90% reduction in the number of undetected tows compared to the existing system.


Author(s):  
Lidia S. Chao ◽  
Derek F. Wong ◽  
Philip C. L. Chen ◽  
Wing W. Y. Ng ◽  
Daniel S. Yeung

The ordinary feature selection methods select only the explicit relevant attributes by filtering the irrelevant ones. They trade the selection accuracy for the execution time and complexity. In which, the hidden supportive information possessed by the irrelevant attributes may be lost, so that they may miss some good combinations. We believe that attributes are useless regarding the classification task by themselves, sometimes may provide potentially useful supportive information to other attributes and thus benefit the classification task. Such a strategy can minimize the information lost, therefore is able to maximize the classification accuracy. Especially for the dataset contains hidden interactions among attributes. This paper proposes a feature selection methodology from a new angle that selects not only the relevant features, but also targeting at the potentially useful false irrelevant attributes by measuring their supportive importance to other attributes. The empirical results validate the hypothesis by demonstrating that the proposed approach outperforms most of the state-of-the-art filter based feature selection methods.


2018 ◽  
Author(s):  
Michele Donini ◽  
Joao M. Monteiro ◽  
Massimiliano Pontil ◽  
Tim Hahn ◽  
Andreas J. Fallgatter ◽  
...  

Combining neuroimaging and clinical information for diagnosis, as for example behavioral tasks and genetics characteristics, is potentially beneficial but presents challenges in terms of finding the best data representation for the different sources of information. Their simple combination usually does not provide an improvement if compared with using the best source alone. In this paper, we proposed a framework based on a recent multiple kernel learning algorithm called EasyMKL and we investigated the benefits of this approach for diagnosing two different mental health diseases. The well known Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset tackling the Alzheimer Disease (AD) patients versus healthy controls classification task, and a second dataset tackling the task of classifying an heterogeneous group of depressed patients versus healthy controls. We used EasyMKL to combine a huge amount of basic kernels alongside a feature selection methodology, pursuing an optimal and sparse solution to facilitate interpretability. Our results show that the proposed approach, called EasyMKLFS, outperforms baselines (e.g. SVM and SimpleMKL), state-of-the-art random forests (RF) and feature selection (FS) methods.


Author(s):  
Y. L. Srinivas ◽  
Debasish Dutta

Abstract An algorithm for generating the missing view corresponding to a given pair of orthoghonal views of a polyhedral solid is presented. The solution involves reconstructing the solids from the partial information given and then generating the missing view. The input is a vertex connectivity matrix describing the given views. Reconstruction of solids from incomplete orthographic views will have applications in computer-aided design, machine vision and automated inspection systems.


Sign in / Sign up

Export Citation Format

Share Document