Linear Programming for Power-System Network Security Applications

1979 ◽  
Vol PAS-98 (3) ◽  
pp. 837-848 ◽  
Author(s):  
B Stott ◽  
J. Marinho
2018 ◽  
Vol 7 (2.6) ◽  
pp. 283 ◽  
Author(s):  
Pranda Prasanta Gupta ◽  
Prerna Jain ◽  
Suman Sharma ◽  
Rohit Bhakar

In deregulated power markets, Independent System Operators (ISOs) maintains adequate reserve requirement in order to respond to generation and system security constraints. In order to estimate accurate reserve requirement and handling non-linearity and non-convexity of the problem, an efficient computational framework is required. In addition, ISO executes SCUC in order to reach the consistent operation. In this paper, a novel type of application which is Benders decomposition (BD) and Mixed integer non linear programming (MINLP) can be used to assess network security constraints by using AC optimal power flow (ACOPF) in a power system. It performs ACOPF in network security check evaluation with line outage contingency. The process of solving modified system would be close to optimal solution, the gap between the close to optimal and optimal solution is expected to determine whether a close to optimal solutionis accepetable for convenientpurpose. This approach drastically betters the fast computational requirement in practical power system .The numerical case studies are investigated in detail using an IEEE 118-bus system. 


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Changyu Zhou ◽  
Guohe Huang ◽  
Jiapei Chen

In this study, an inexact two-stage stochastic linear programming (ITSLP) method is proposed for supporting sustainable management of electric power system under uncertainties. Methods of interval-parameter programming and two-stage stochastic programming were incorporated to tackle uncertainties expressed as interval values and probability distributions. The dispatchable loads are integrated into the framework of the virtual power plants, and the support vector regression technique is applied to the prediction of electricity demand. For demonstrating the effectiveness of the developed approach, ITSLP is applied to a case study of a typical planning problem of power system considering virtual power plants. The results indicate that reasonable solutions for virtual power plant management practice have been generated, which can provide strategies in mitigating pollutant emissions, reducing system costs, and improving the reliability of power supply. ITSLP is more reliable for the risk-aversive planners in handling high-variability conditions by considering peak-electricity demand and the associated recourse costs attributed to the stochastic event. The solutions will help decision makers generate alternatives in the event of the insufficient power supply and offer insight into the tradeoffs between economic and environmental objectives.


2012 ◽  
Vol 60 (1) ◽  
pp. 151-158
Author(s):  
J. Xing ◽  
C. Chen ◽  
P. Wu

Calculation of interval damping ratio under uncertain load in power system The problem of small-signal stability considering load uncertainty in power system is investigated. Firstly, this paper shows attempts to create a nonlinear optimization model for solving the upper and lower limits of the oscillation mode's damping ratio under an interval load. Then, the effective successive linear programming (SLP) method is proposed to solve this problem. By using this method, the interval damping ratio and corresponding load states at its interval limits are obtained. Calculation results can be used to evaluate the influence of load variation on a certain mode and give useful information for improvement. Finally, the proposed method is validated on two test systems.


2018 ◽  
Vol 246 ◽  
pp. 03016
Author(s):  
Aidong Xu ◽  
Kai Fan ◽  
Hang Yang

With the rapid development of information technology construction in the power industry, research on network security has become a problem that cannot be ignored. This paper introduces the use of information communication network equipment at home and abroad in power system; analyzes the security risks of foreign network equipment in power system, shows the risk of power system network and the urgent need for localization of network equipment and analyzes the security of internal network of power system Risks; specific measures for the safety control of network equipment in the whole process are proposed to provide reference for power system network security protection.


Sign in / Sign up

Export Citation Format

Share Document