scholarly journals Differential-Mode EMI Reduction in a Multiphase DCM Flyback Converter

2009 ◽  
Vol 24 (8) ◽  
pp. 2013-2020 ◽  
Author(s):  
Pablo Zumel ◽  
Oscar GarcÍa ◽  
Jesus A. Oliver ◽  
Jose A. Cobos
Author(s):  
Zhaoming Ning ◽  
Zhaowen Yan ◽  
Yaoxing Zhang ◽  
Na Wang ◽  
Jun Tang ◽  
...  

Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 427-433
Author(s):  
Yaxin Liu ◽  
Feng Wei ◽  
Xiaowei Shi ◽  
Cao Zeng

AbstractIn this paper, a balanced-to-balanced (BTB) branch-slotline directional coupler (DC) is firstly presented, which can realize an arbitrary power division ratios (PDRs). The coupler is composed by microstrip-to-slotline (MS) transition structures and branch-slotline coupled structures. The single-ended to balanced-ended conversion is simplified and easy to implemented by the MS transition structures, which intrinsically leads to the differential-mode (DM) transmission and common-mode (CM) suppression. Moreover, the different PDRs which are controlled by the widths of branch-slotlines can be achieved. In order to verify the feasibility of the proposed design method, two prototype circuits of the proposed coupler with different PDRs are fabricated and measured. The return loss and the isolation of two designs are all better than 10 dB. Moreover, the CM suppressions are greater than 35 dB. A good agreement between the simulation and measurement results is observed.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Mario Ponce-Silva ◽  
Daniel Salazar-Pérez ◽  
Oscar Miguel Rodríguez-Benítez ◽  
Luis Gerardo Vela-Valdés ◽  
Abraham Claudio-Sánchez ◽  
...  

The main contribution of this paper is to show a new AC/DC converter based on the rearrangement of the flyback converter. The proposed circuit only manages part of the energy and the rest is delivered directly from the source to the load. Therefore, with the new topology, the efficiency is increased, and the stress of the components is reduced. The rearrangement consist of the secondary of the flyback is placed in parallel with the load, and this arrangement is connected in series with the primary side and the rectified voltage source. The re-arranged flyback is only a reductive topology and with no magnetic isolation. It was studied as a power supply for LEDs. A low frequency averaged analysis (LFAA) was used to determine the behavior of the proposed circuit and an equivalent circuit much easier to analyze was obtained. To validate the theoretical analysis, a design methodology was developed for the re-arranged flyback converter. The designed circuit was implemented in a 10 W prototype. Experimental results showed that the converter has a THDi = 21.7% and a PF = 0.9686.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 185
Author(s):  
Yan Xu ◽  
Baojian Wu ◽  
Xinrui Jiang ◽  
Haomiao Guo ◽  
Feng Wen

According to the analytical expression for modal gain of few-mode erbium-doped fiber amplifiers (FM-EDFAs), we propose a method of measuring the absorption loss coefficients of few-mode signals in few-mode erbium-doped fibers (FM-EDFs) by extrapolating the mode–gain curve dependent on the average population inversion. The absorption loss coefficient of an FM-EDF was measured in our experimental platform and used to estimate the effective erbium-ion doping concentration. The feasibility of the extrapolation method was verified by simulation and comparison with the transmission method. Furthermore, the FM-EDFAs with high modal gain and low differential mode gain (DMG) could be optimized by adjusting the FM-EDF’s length and pump power. The analysis process presented here is very useful for the efficient design of FM-EDFAs from a practical point of view.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


Sign in / Sign up

Export Citation Format

Share Document