Analysis on the Ring-type Piezoelectric Ceramic Transformer in Radial Vibration

Author(s):  
Lin Shuyu ◽  
Cao Hui
1998 ◽  
Vol 37 (Part 1, No. 5B) ◽  
pp. 2896-2900 ◽  
Author(s):  
Katsutoshi Sakurai ◽  
Tohru Nakazawa ◽  
Sigeru Shindou ◽  
Kazumasa Ohnishi ◽  
Yoshiro Tomikawa

1998 ◽  
Vol 37 (Part 1, No. 9B) ◽  
pp. 5326-5329
Author(s):  
Katsutoshi Sakurai ◽  
Shigeki Shindou ◽  
Kazumasa Ohnishi ◽  
Yoshiro Tomikawa

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4785
Author(s):  
Xiaoyu Wang ◽  
Shuyu Lin

The radial vibration of a radial composite tubular transducer with a large radiation range and power capacity is studied. The transducer is composed of a longitudinally polarized piezoelectric ceramic tube and a coaxial outer metal tube. Assuming that the longitudinal length is much larger than the radius, the electromechanical equivalent circuits of the radial vibration of a piezoelectric ceramic long tube and a metal long tube are derived and obtained for the first time following the plane strain theory. As per the condition of the continuous forces and displacements of two contact surfaces, the electromechanical equivalent circuit of the tubular transducer is obtained. The radial resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained. Then, the effects of the radial geometry dimension of the transducer on the vibration characteristics are analyzed. The theoretical resonance frequencies, anti-resonance frequencies, and the effective electromechanical coupling coefficients at the fundamental mode and the second mode are in good agreement with the finite element analysis (FEA) results. The study shows that when the overall size of the transducer is unchanged, as the proportion of piezoelectric ceramic increases, the radial resonance/anti-resonance frequency and the effective electromechanical coupling coefficient of the transducer at the fundamental mode and the second mode have certain characteristics. The radial composite tubular transducer is expected to be used in high-power ultrasonic wastewater treatment, ultrasonic degradation, and underwater acoustics, as well as other high-power ultrasonic fields.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chundong Yao ◽  
Chao Zhang ◽  
Jiani Zhang ◽  
Yang Zhang

Different from the existing equivalent circuit analysis method of the transducer, based on the vibration theory of the mechanical system and combined with the constitutive equation, this paper analyzes the radial vibration characteristics of the transducer. The piezoelectric ceramic composite ultrasonic transducer is simplified as a mechanical model of a composite thick wall tube composed of a piezoelectric ceramic tube and a metal prestressed tube. The mathematical model of radial vibration of the transducer is established, which consists of the wave equation of radial coupling vibration of the piezoelectric ceramic tube and the metal prestressed tube, the continuity conditions, and the boundary conditions of radial vibration of composite thick wall tube. The characteristic equation and the mode function of radial vibration are derived. The calculated results of natural frequency are in good agreement with the existing experimental results. Based on the analytical method and the difference method, the numerical simulation models of radial vibration are established, and the amplitude-frequency characteristic curves and the displacement responses are given. The simulation results show that the amplitude-frequency characteristic curves and the displacement responses of the two methods are the same, which verifies the correctness of simulation results. Through the simulation analysis, the influence rule of the transducer’s structure sizes on its radial vibration natural frequency is given: when the thickness of the metal prestressed tube and the piezoelectric ceramic tube are constant, the natural frequency decreases with the increase of the inner diameter of the piezoelectric ceramic tube; when the outer diameter of the metal prestressed tube and the inner diameter of the piezoelectric ceramic tube are constant, the natural frequency decreases with the increase of the thickness-to-wall ratio. The calculation method of natural frequency based on elastic vibration theory is clear in concept and simple in calculation, and the simulation models can analyze the mechanical vibration of the transducer.


Sign in / Sign up

Export Citation Format

Share Document