Active Damping Stabilization for High-Speed BLDCM Drive System Based on Band-Pass Filter

2017 ◽  
Vol 32 (7) ◽  
pp. 5438-5449 ◽  
Author(s):  
Xinda Song ◽  
Shiqiang Zheng ◽  
Bangcheng Han ◽  
Cong Peng ◽  
Xinxiu Zhou
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1808
Author(s):  
Yihang Liu ◽  
Qican Zhang ◽  
Haihua Zhang ◽  
Zhoujie Wu ◽  
Wenjing Chen

The high-speed three-dimensional (3-D) shape measurement technique has become more and more popular recently, because of the strong demand for dynamic scene measurement. The single-shot nature of Fourier Transform Profilometry (FTP) makes it highly suitable for the 3-D shape measurement of dynamic scenes. However, due to the band-pass filter, FTP method has limitations for measuring objects with sharp edges, abrupt change or non-uniform reflectivity. In this paper, an improved Temporal Fourier Transform Profilometry (TFTP) algorithm combined with the 3-D phase unwrapping algorithm based on a reference plane is presented, and the measurement of one deformed fringe pattern producing a new 3-D shape of an isolated abrupt objects has been achieved. Improved TFTP method avoids band-pass filter in spatial domain and unwraps 3-D phase distribution along the temporal axis based on the reference plane. The high-frequency information of the measured object can be well preserved, and each pixel is processed separately. Experiments verify that our method can be well applied to a dynamic 3-D shape measurement with isolated, sharp edges or abrupt change. A high-speed and low-cost structured light pattern sequence projection has also been presented, it is capable of projection frequencies in the kHz level. Using the proposed 3-D shape measurement algorithm with the self-made mechanical projector, we demonstrated dynamic 3-D reconstruction with a rate of 297 Hz, which is mainly limited by the speed of the camera.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Tatsuo Ohmachi ◽  
Shusaku Inoue ◽  
Tetsuji Imai

The 2003 Tokachi-oki earthquake (MJ 8.0) occurred off the southeastern coast of Tokachi, Japan, and generated a large tsunami which arrived at Tokachi Harbor at 04:56 with a wave height of 4.3 m. Japan Marine Science and Technology Center (JAMSTEC) recovered records of water pressure and sea-bed acceleration at the bottom of the tsunami source region. These records are first introduced with some findings from Fourier analysis and band-pass filter analysis. Water pressure disturbance lasted for over 30 minutes and the duration was longer than those of accelerations. Predominant periods of the pressure looked like those excited by Rayleigh waves. Next, numerical simulation was conducted using the dynamic tsunami simulation technique able to represent generation and propagation of Rayleigh wave and tsunami, with a satisfactory result showing validity and usefulness of this technique. Keywords: Earthquake, Rayleigh wave, tsunami, near-field


Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165924
Author(s):  
Shantanu Mandal ◽  
Kousik Bishayee ◽  
Arindum Mukherjee ◽  
B N Biswas ◽  
Chandan Kumar Sarkar

Sign in / Sign up

Export Citation Format

Share Document