Virtual Damping Control Design of Three-Phase Grid-Tied PV Inverters for Passivity Enhancement

Author(s):  
Zhiqing Yang ◽  
Chirag Shah ◽  
Tianxiao Chen ◽  
Jakob Teichrib ◽  
Rik W. De Doncker
2000 ◽  
Author(s):  
Chunhao Joseph Lee ◽  
Constantinos Mavroidis

Abstract This paper presents robust and optimal control methods to suppress vibrations of flexible payloads carried by robotic systems. A new improved estimator in discrete-time H2 optimal control design based on the Kalman Filter predictor form is developed here. Two control design methods using state-space models, LQR and H2 Optimal Design, in discrete-time domain are applied and compared. The manipulator joint encoders and the wrist-mounted six-degree-of-freedom force/torque sensor provide the control feedback. A complete dynamic model of the robot/payload system is taken into account to synthesize the controllers. Experimental verifications of both methods are performed using a Mitsubishi five-degree-of-freedom robot manipulator that carries a flexible beam. It is shown that both methods damp out the vibrations of the payload very effectively.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 234 ◽  
Author(s):  
Ahmet Aksoz ◽  
Yipeng Song ◽  
Ali Saygin ◽  
Frede Blaabjerg ◽  
Pooya Davari

In this paper, a virtual positive impedance (VPI) based active damping control for a slim DC-link motor drive with 24 section space vector pulse width modulation (SVPWM) is proposed. Utilizing the proposed control and modulation strategy can improve the input of current total harmonic distortion (THD) while maintaining the cogging torque of the motor. The proposed system is expected to reduce the front-end current THD according to international standards, as per IEC 61000 and IEEE-519. It is also expected to achieve lower cost, longer lifetime, and fewer losses. A permanent magnet synchronous motor (PMSM) is fed by the inverter, which adopts the 24 section SVPWM technique. The VPI based active damping control for the slim DC-link drive with/without the 24 section SVPWM are compared to confirm the performance of the proposed method. The simulation results based on MATLAB are provided to validate the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document