A Numerical Simulation and Experimental Comparison of Atmospheric Thermal Plasma Spray Coatings Between Internal and External Powder Injection Processes

2020 ◽  
Vol 48 (8) ◽  
pp. 2759-2767
Author(s):  
Tong-Yang Hsu ◽  
Tse-Chiang Huang ◽  
Jun-Hung Chou ◽  
Yi-Feng Lin ◽  
Keizo Nakagawa ◽  
...  
2016 ◽  
Vol 6 (4) ◽  
Author(s):  
Andrew McCabe ◽  
Martin Pickford ◽  
James Shawcross

Thermal plasma sprayed coatings are designed to improve both the biocompatibility and durability of implantable medical devices, and include pure titanium, cobalt/chrome alloy and hydroxyapatite.  Coated joint replacements have now been in continuous clinical use for thirty years and are applied to products manufactured or used in Europe, North America, South America, Africa, Asia and Australasia. Prostheses incorporating such coatings have been successfully implanted into several million of patients worldwide and to date there have been very few reports of any failure of an implant which could be attributed to problems with, or failure of, the coating. This paper summarises the early history of cementless prostheses and subsequent development, specification, validation, regulatory requirements and clinical performance of thermal plasma spray coatings provided by Accentus Medical.


2007 ◽  
Vol 534-536 ◽  
pp. 89-92 ◽  
Author(s):  
Hyun Kwang Seok ◽  
Yu Chan Kim ◽  
Frédéric Prima ◽  
Eric Fleury

This works deals with the deposition of Ti-Zr-Ni icosahedral quasicrystalline powders by low vacuum plasma spray technique and the performances of the resulting coating layers. The microstructure of the coatings, as analyzed by X-ray diffraction and TEM techniques, consisted of nanometer-sized W-Ti50Zr35Ni15 1/1 cubic approximant and TiZrNi Laves phases as well as a low volume fraction of submicrometer-sized ZrO2 phase. The absence of the icosahedral phase in the coating layers was explained by the loss of Ti during plasma spraying. The shift in the composition and the presence of the ZrO2 phase within the coating layers are believed to be responsible for the reduced microhardness and corrosion performances evaluated by electrochemical tests in a Hanks’ Balance Salt Solution at 37oC.


2011 ◽  
Vol 20 (4) ◽  
pp. 967-973 ◽  
Author(s):  
Elliot M. Cotler ◽  
Dianying Chen ◽  
Ronald J. Molz

2018 ◽  
Vol 26 (3) ◽  
pp. 509-521
Author(s):  
M. Goudarzi ◽  
Sh. Saviz ◽  
M. Ghoranneviss ◽  
A. Salar Elahi

Author(s):  
A.Ph. Ilyuschenko ◽  
N.I. Shipica ◽  
P.A. Vityaz ◽  
A.A. Yerstak ◽  
A.Y. Beliaev

Abstract This paper presents the results of a study on the wear resistance of plasma spray coatings made from Cr2O3-TiO2-CaF2 powders. The composite powders used were produced by self-propagating high temperature synthesis. They were then applied under various conditions in order to optimize the material system, spray process, and application procedures. Based on the results of microstructural examination and wear testing, the thermally sprayed composite coatings have excellent wear resistance, good adhesion, and are self-lubricating at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document