Numerical Investigation on Residual Axial Magnetic Field in Vacuum Interrupter in DC Interruption Based on Artificial Current Zero

2017 ◽  
Vol 32 (4) ◽  
pp. 1915-1923 ◽  
Author(s):  
Zongqian Shi ◽  
Yingkui Zhang ◽  
Qiaosen Wang ◽  
Shenli Jia ◽  
Lijun Wang
1985 ◽  
Vol 40 (5) ◽  
pp. 485-489 ◽  
Author(s):  
Toshiatsu Oda ◽  
Utaro Furukane

A numerical investigation on the basis of a collisional-radiative (CR) model has shown that laser oscillation between the levels with the principal quantum numbers i = 2 and 3 can be generated in a recombining hydrogen plasma interacting with a dense helium gas as a cooling medium in TPD-I, which is a magnetically confined quiescent high-density plasma source consisting basically of two parts, namely, the discharge region with the cathode at the center of the cusped magnetic field and the plasma column region with the axial magnetic field. The population inversion is found to exceed significantly a threshold level for the laser oscillation even in the quasi-steady state when the hydrogen plasma with ne = 1013 ~ 1014 cm−3 interacts with the helium gas with a pressure of about 50 Torr.


2012 ◽  
Vol 516-517 ◽  
pp. 1791-1797 ◽  
Author(s):  
Mohmmad Al Dweikat ◽  
Yu Long Huang ◽  
Xiao Lin Shen ◽  
Wei Dong Liu

DC Vacuum Circuit Breakers based arc control has been a major topic in the last few decades. Understanding vacuum arc (VA) gives the ability to improve vacuum circuit breakers capacity. In this paper, the interaction of a DC vacuum arc with a combined Axial-Radial magnetic field was investigated. The proposed system contains an external coil to produce axial magnetic field (AMF) across the vacuum chamber. The vacuum interrupter (VI) contacts were assumed to be untreated radial magnetic field (RMF) contacts. For this purpose, Finite Element Method (FEM) based Multiphysics simulation of the immerging magnetic field influence on the VA is presented. The simulation shown the ability of the presented system to deflect high DC vacuum arc, also reveals that the vacuum arc interruption capability increases with the rise of the axial component of the magnetic field. Simulation results shown that this method can be applied to improve the interruption capability of the VI.


Sign in / Sign up

Export Citation Format

Share Document