Minimum Separation Distance Between Transmission Lines and Underground Pipelines for Inductive Interference Mitigation

2020 ◽  
Vol 35 (3) ◽  
pp. 1299-1309 ◽  
Author(s):  
Chenyang Wang ◽  
Xiaodong Liang ◽  
Roberta Radons
Author(s):  
Meyer Nahon

Abstract The determination of the interference distance between objects is a problem encountered in the off-line simulation of robotic systems. It is similar to the problem of finding the minimum separation distance between two bodies — a problem which, at present, is commonly solved using optimization techniques. This paper presents an analogous optimization formulation for the quick and accurate determination of the interference distance between two interfering objects. The optimization problem consists of finding the maximum amount by which the boundaries of two interfering object can be moved back while still maintaining a non-empty interference volume. Since the approach used is similar to that used in the minimum separation problem, a single algorithm has been implemented which, given the position and orientation of two objects, will return the separation or interference distance between the objects, as appropriate.


Author(s):  
Charles W. Finkl ◽  
Roger Charlier ◽  
Erin Hague

Ocean currents contain a remarkable amount of kinetic energy and have potential worldwide capability. Initial tests to harness current power focus on the Straits of Florida where the Florida Current has a total flow capacity of about 30 × 106 m3 s−1. Generation of clean electricity from ocean currents off southeast Florida is based on a power extractor comprised by open-center turbine technology. This innovative turbine provides safe passage for fish and other aquatic species. The water-column array of energy production units (EPUs) will have a 350 km2 footprint, based on a 600 m (10 rotor diameters) downstream separation distance between EPUs with a lateral separation of 400 m. Water depths for the EPU field are in the range of 100 to 500 m. With such a large area of water column and benthic habitat utilized, environmental concerns must be overcome, including routing of transmission lines to shore. Risks and vulnerabilities of the proposed ocean current generated electricity include failure of individual EPUs and damage to sensitive coastal marine environments during installation.


Author(s):  
S. H. Hosseini ◽  
H. Naderpour ◽  
R. Vahdani ◽  
R. Jankowski

AbstractIn this paper, three different damage indexes were used to detect nonlinear damages in two adjacent Reinforced Concrete (RC) structures considering pounding effects. 2-, 4- and 8-story benchmark RC Moment Resisting Frames (MRFs) were selected for this purpose with 60%, 75%, and 100% of minimum separation distance and also without any in-between separation gap. These structures were analyzed using the incremental dynamic analysis method under 44 far-field ground motion records. Comparison of the results between the MRFs with and without considering pounding effects show that collisions lead to a decrease in the values of coefficient of determination and the nonlinear damage occurs in lower seismic intensity. As a result, using the damage indexes, nonlinear damages can be detected during a specific seismic intensity. Moreover, considering a minimum separation distance leads to an increase in the coefficient of determination between the damage index and the maximum story drift ratio. Furthermore, due to pounding, shorter MRFs are damaged more significantly than the taller structures.


Sign in / Sign up

Export Citation Format

Share Document