scholarly journals Wave energy converter array optimization: A genetic algorithm approach and minimum separation distance study

2018 ◽  
Vol 163 ◽  
pp. 148-156 ◽  
Author(s):  
Chris Sharp ◽  
Bryony DuPont
Author(s):  
Chris Sharp ◽  
Bryony DuPont

For consumers residing near a coastline, and especially for those living or working in remote coastal areas, ocean energy is a promising source of electricity that has the potential to serve as a primary energy source. Over the last decade, many wave energy converter (WEC) designs have been developed for extracting energy from the ocean waves, and with the progression of these devices’ ocean deployment, the industry is looking ahead to the integration of arrays of devices into the grid. Due to the many factors that can potentially influence the configuration of an array (such as device interaction and system cost) optimal positioning of WECs in an array has yet to be well understood. This paper presents the results of a novel real-coded genetic algorithm created to determine ideal array configurations in a non-discretized space such that both power and cost are included in the objective. Power is calculated such that the wave interactions between devices are considered and cost is calculated using an analytical model derived from Sandia National Laboratory’s Reference Model Project. The resulting layouts are compared against previous array optimization results, using the same constraints as previous work to facilitate algorithm comparison. With the development of an algorithm that dictates device placement in a continuous space so that optimal array configurations are achieved, the results presented in this paper demonstrate progression towards an open-source method that the wave energy industry can use to more efficiently extract energy from the ocean’s vast supply through the creation of array designs that consider the many elements of a WEC array.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
Miguel Calvário ◽  
C. Guedes Soares

Abstract This paper presents the adaptation of a torus wave energy converter prime mover to an onshore or nearshore fixed platform, by a hinged arm. An optimization code is developed to obtain the best torus and arm geometry, as well as the power take-off parameters, taking as objective function the maximization of total wave absorbed power. In this paper, the power take-off system is modelled as a simplified damper and spring system, where the parameters are optimized for the phase control of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. Finally, the optimal result for the productive sea state indicates that the absorbed power is relatively considerable while a better survivability performance is expected from a torus wave energy converter compared to a conventional truncated prime mover.


2020 ◽  
Vol 8 (7) ◽  
pp. 482 ◽  
Author(s):  
Sergej Antonello Sirigu ◽  
Ludovico Foglietta ◽  
Giuseppe Giorgi ◽  
Mauro Bonfanti ◽  
Giulia Cervelli ◽  
...  

Although sea and ocean waves have been widely acknowledged to have the potential of providing sustainable and renewable energy, the emergence of a self-sufficient and mature industry is still lacking. An essential condition for reaching economic viability is to minimise the cost of electricity, as opposed to simply maximising the converted energy at the early design stages. One of the tools empowering developers to follow such a virtuous design pathway is the techno-economic optimisation. The purpose of this paper is to perform a holistic optimisation of the PeWEC (pendulum wave energy converter), which is a pitching platform converting energy from the oscillation of a pendulum contained in a sealed hull. Optimised parameters comprise shape; dimensions; mass properties and ballast; power take-off control torque and constraints; number and characteristics of the pendulum; and other subcomponents. Cost functions are included and the objective function is the ratio between the delivered power and the capital expenditure. Due to its ability to effectively deal with a large multi-dimensional design space, a genetic algorithm is implemented, with a specific modification to handle unfeasible design candidate and improve convergence. Results show that the device minimising the cost of energy and the one maximising the capture width ratio are substantially different, so the economically-oriented metric should be preferred.


2021 ◽  
Vol 170 ◽  
pp. 1020-1039
Author(s):  
S.D.G.S.P. Gunawardane ◽  
G.A.C.T. Bandara ◽  
Young-Ho Lee

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 204
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Guang-Kai Wu ◽  
Chia-Che Wu

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead–zirconium–titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 μW.


Sign in / Sign up

Export Citation Format

Share Document