Insulator breakage detection utilizing a convolutional neural network ensemble implemented with small sample data augmentation and transfer learning

Author(s):  
Lingcong She ◽  
Yadong Fan ◽  
Mengxi Xu ◽  
Wang Jianguo ◽  
Xue Jian ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2399 ◽  
Author(s):  
Cunwei Sun ◽  
Yuxin Yang ◽  
Chang Wen ◽  
Kai Xie ◽  
Fangqing Wen

The convolutional neural network (CNN) has made great strides in the area of voiceprint recognition; but it needs a huge number of data samples to train a deep neural network. In practice, it is too difficult to get a large number of training samples, and it cannot achieve a better convergence state due to the limited dataset. In order to solve this question, a new method using a deep migration hybrid model is put forward, which makes it easier to realize voiceprint recognition for small samples. Firstly, it uses Transfer Learning to transfer the trained network from the big sample voiceprint dataset to our limited voiceprint dataset for the further training. Fully-connected layers of a pre-training model are replaced by restricted Boltzmann machine layers. Secondly, the approach of Data Augmentation is adopted to increase the number of voiceprint datasets. Finally, we introduce fast batch normalization algorithms to improve the speed of the network convergence and shorten the training time. Our new voiceprint recognition approach uses the TLCNN-RBM (convolutional neural network mixed restricted Boltzmann machine based on transfer learning) model, which is the deep migration hybrid model that is used to achieve an average accuracy of over 97%, which is higher than that when using either CNN or the TL-CNN network (convolutional neural network based on transfer learning). Thus, an effective method for a small sample of voiceprint recognition has been provided.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2021 ◽  
Vol 290 ◽  
pp. 02020
Author(s):  
Boyu Zhang ◽  
Xiao Wang ◽  
Shudong Li ◽  
Jinghua Yang

Current underwater shipwreck side scan sonar samples are few and difficult to label. With small sample sizes, their image recognition accuracy with a convolutional neural network model is low. In this study, we proposed an image recognition method for shipwreck side scan sonar that combines transfer learning with deep learning. In the non-transfer learning, shipwreck sonar sample data were used to train the network, and the results were saved as the control group. The weakly correlated data were applied to train the network, then the network parameters were transferred to the new network, and then the shipwreck sonar data was used for training. These steps were repeated using strongly correlated data. Experiments were carried out on Lenet-5, AlexNet, GoogLeNet, ResNet and VGG networks. Without transfer learning, the highest accuracy was obtained on the ResNet network (86.27%). Using weakly correlated data for transfer training, the highest accuracy was on the VGG network (92.16%). Using strongly correlated data for transfer training, the highest accuracy was also on the VGG network (98.04%). In all network architectures, transfer learning improved the correct recognition rate of convolutional neural network models. Experiments show that transfer learning combined with deep learning improves the accuracy and generalization of the convolutional neural network in the case of small sample sizes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xieyi Chen ◽  
Dongyun Wang ◽  
Jinjun Shao ◽  
Jun Fan

To automatically detect plastic gasket defects, a set of plastic gasket defect visual detection devices based on GoogLeNet Inception-V2 transfer learning was designed and established in this study. The GoogLeNet Inception-V2 deep convolutional neural network (DCNN) was adopted to extract and classify the defect features of plastic gaskets to solve the problem of their numerous surface defects and difficulty in extracting and classifying the features. Deep learning applications require a large amount of training data to avoid model overfitting, but there are few datasets of plastic gasket defects. To address this issue, data augmentation was applied to our dataset. Finally, the performance of the three convolutional neural networks was comprehensively compared. The results showed that the GoogLeNet Inception-V2 transfer learning model had a better performance in less time. It means it had higher accuracy, reliability, and efficiency on the dataset used in this paper.


2019 ◽  
Vol 28 (1) ◽  
pp. 3-12
Author(s):  
Jarosław Kurek ◽  
Joanna Aleksiejuk-Gawron ◽  
Izabella Antoniuk ◽  
Jarosław Górski ◽  
Albina Jegorowa ◽  
...  

This paper presents an improved method for recognizing the drill state on the basis of hole images drilled in a laminated chipboard, using convolutional neural network (CNN) and data augmentation techniques. Three classes were used to describe the drill state: red -- for drill that is worn out and should be replaced, yellow -- for state in which the system should send a warning to the operator, indicating that this element should be checked manually, and green -- denoting the drill that is still in good condition, which allows for further use in the production process. The presented method combines the advantages of transfer learning and data augmentation methods to improve the accuracy of the received evaluations. In contrast to the classical deep learning methods, transfer learning requires much smaller training data sets to achieve acceptable results. At the same time, data augmentation customized for drill wear recognition makes it possible to expand the original dataset and to improve the overall accuracy. The experiments performed have confirmed the suitability of the presented approach to accurate class recognition in the given problem, even while using a small original dataset.


2021 ◽  
Vol 17 (4) ◽  
pp. 155014772110074
Author(s):  
Jingyao Zhang ◽  
Yuan Rao ◽  
Chao Man ◽  
Zhaohui Jiang ◽  
Shaowen Li

Due to the complex environments in real fields, it is challenging to conduct identification modeling and diagnosis of plant leaf diseases by directly utilizing in-situ images from the system of agricultural Internet of things. To overcome this shortcoming, one approach, based on small sample size and deep convolutional neural network, was proposed for conducting the recognition of cucumber leaf diseases under field conditions. One two-stage segmentation method was presented to acquire the lesion images by extracting the disease spots from cucumber leaves. Subsequently, after implementing rotation and translation, the lesion images were fed into the activation reconstruction generative adversarial networks for data augmentation to generate new training samples. Finally, to improve the identification accuracy of cucumber leaf diseases, we proposed dilated and inception convolutional neural network that was trained using the generated training samples. Experimental results showed that the proposed approach achieved the average identification accuracy of 96.11% and 90.67% when implemented on the data sets of lesion and raw field diseased leaf images with three different diseases of anthracnose, downy mildew, and powdery mildew, significantly outperforming those existing counterparts, indicating that it offered good potential of serving field application of agricultural Internet of things.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Zheng ◽  
Tao Huang

In order to achieve the accuracy of mango grading, a mango grading system was designed by using the deep learning method. The system mainly includes CCD camera image acquisition, image preprocessing, model training, and model evaluation. Aiming at the traditional deep learning, neural network training needs a large number of sample data sets; a convolutional neural network is proposed to realize the efficient grading of mangoes through the continuous adjustment and optimization of super-parameters and batch size. The ultra-lightweight SqueezeNet related algorithm is introduced. Compared with AlexNet and other related algorithms with the same accuracy level, it has the advantages of small model scale and fast operation speed. The experimental results show that the convolutional neural network model after super-parameters optimization and adjustment has excellent effect on deep learning image processing of small sample data set. Two hundred thirty-four Jinhuang mangoes of Panzhihua were picked in the natural environment and tested. The analysis results can meet the requirements of the agricultural industry standard of the People’s Republic of China—mango and mango grade specification. At the same time, the average accuracy rate was 97.37%, the average error rate was 2.63%, and the average loss value of the model was 0.44. The processing time of an original image with a resolution of 500 × 374 was only 2.57 milliseconds. This method has important theoretical and application value and can provide a powerful means for mango automatic grading.


Sign in / Sign up

Export Citation Format

Share Document