Low Frequency Oscillations in Longitudinal Power Systems: Experience with Dynamic Stability of Taiwan Power System

1987 ◽  
Vol 2 (1) ◽  
pp. 92-98 ◽  
Author(s):  
Yuan-Yih Hsu ◽  
Sheng-Wehn Shyue ◽  
Chung-Ching Su
2013 ◽  
Vol 336-338 ◽  
pp. 928-931
Author(s):  
Chia Liang Lu ◽  
Pei Hwa Huang

Low frequency oscillations due to the lack of damping may occur in power systems under normal operation and will cause system instability. These oscillations are essentially nonlinear power responses which are difficult to extract the inherent characteristics by the time domain method. This paper aims to analyze nonlinear power responses by using the Hilbert-Huang transform (HHT) which is a time-frequency signal processing method which comprises steps of the empirical mode decomposition and the Hilbert transform. Dynamic power system responses, including generator output power and line power are to be processed by the HHT and a set of intrinsic mode functions and the associated Hilbert spectrum are obtained. The generator with most effects on the system will be accordingly found out through the time-frequency analysis and the power system stabilizer will be placed at the generator. Numerical results from a sample power system are demonstrated to show the validity of the time-frequency approach in the study of power system low frequency oscillations.


2013 ◽  
Vol 321-324 ◽  
pp. 1382-1387 ◽  
Author(s):  
Ali Nasser Hussain ◽  
F. Malek ◽  
Mohd. Abdur Rashid ◽  
Latifah Mohamed ◽  
Nuriziani Hussin

The large expansion of electrical power systems usually results in problem of low frequency oscillations. Therefore, the conventional Power System Stabilizers (PSSs) used to solve this problem cannot provide an adequate damping of low frequency oscillations. Flexible AC Transmission System (FACTS) damping controllers are available for providing suitable damping for these oscillations. This paper, presents the simultaneous coordinated design of the multiple damping controllers between PSS and SVC-based stabilizer in a single machine infinite bus power system. The coordinated design problem of multiple damping controllers is formulated as an optimization problem. Particle swarm optimization algorithm is applied in order to search optimal controlling parameters by maximizing the objective function based on the eigenvalue. The simulation results for a wide range of operation condition show that the coordinated design able to provide better damping and stability performance.


2019 ◽  
Vol 41 (12) ◽  
pp. 3477-3489
Author(s):  
Hong-Liang Gao ◽  
Xi-Sheng Zhan ◽  
Yi-Ran Yuan ◽  
Zi-Jie Pan ◽  
Guo-Long Yuan

Several methods have been proposed and implemented to improve the power system stability. Based on the theory of proportional-integral-derivative (PID) excitation control and the composition principle of fuzzy PID controller, a novel PID controller based on Mamdani fuzzy inference (MFPID) is proposed in this paper. The proposed controller realizes the self-adjustment of the excitation controller parameter. Furthermore, the MFPID and power system stabilizer (PSS) subsection switch control strategy (MFPID-PSS) is presented based on the advantages of PSS and MFPID. In MFPID-PSS strategy, by switching the control strategy between MFPID and PSS at appropriate moment, the MFPID-PSS method acquires the overshoot as small as PSS, and at the same time acquires the adjusting time as short as MFPID. The simulation results demonstrate that the MFPID-PSS method improves the power system stability and has better mitigation effect for low frequency oscillations in power systems after disturbances.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2020 ◽  
Vol 35 (6) ◽  
pp. 4666-4677
Author(s):  
Piyush Warhad Pande ◽  
Saikat Chakrabarti ◽  
Suresh Chandra Srivastava ◽  
Subrata Sarkar

Sign in / Sign up

Export Citation Format

Share Document