Analysis and Characterization of Soft-Lithography-Compatible Parallel-Electrode-Sensors in Microfluidic Devices

Author(s):  
Ruxiu Liu ◽  
Chia-Heng Chu ◽  
Mert Boya ◽  
Dohwan Lee ◽  
Ozgun Civelekoglu ◽  
...  
Author(s):  
Shuo Wang ◽  
Peter Shankles ◽  
Scott Retterer ◽  
Yong Tae Kang ◽  
Chang Kyoung Choi

Abstract Opto-microfluidic methods have advantages for manufacturing complex shapes or structures of micro particles/hydrogels. Most of these microfluidic devices are made of polydimethylsiloxane (PDMS) by soft lithography because of its flexibility of designing and manufacturing. However, PDMS scatters ultraviolet (UV) light, which polymerizes the photocrosslinkable materials at undesirable locations and clogs the microfluidic devices. A fluorescent dye has previously been employed to absorb the scattered UV light and shift its wavelength to effectively solve this issue. However, this method is limited due to the cost of the materials (tens of dollars per microchip), the time consumed on synthesizing the fluorescent material and verifying its quality (two to three days). More importantly, significant expertise on material synthesis and characterization is required for users of the opto-microfluidic technique. The cost of preliminary testing on multiple iterations of different microfluidic chip designs would also be excessive. Alternatively, with a delicate microchannel design, we simply inserted aluminum foil strips (AFS) inside the PDMS device to block the scattered UV light. By using this method, the UV light was limited to the exposure region so that the opto-microfluidic device could consistently generate microgels longer than 6 h. This is a nearly cost- and labor-free method to solve this issue.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


Author(s):  
Xiao Wang ◽  
Jian Zhou ◽  
Nivedita Nivedita ◽  
Ian Papautsky
Keyword(s):  

2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Mohamed ◽  
Hitendra Kumar ◽  
Zongjie Wang ◽  
Nicholas Martin ◽  
Barry Mills ◽  
...  

With the dramatic increment of complexity, more microfluidic devices require 3D structures, such as multi-depth and -layer channels. The traditional multi-step photolithography is time-consuming and labor-intensive and also requires precise alignment during the fabrication of microfluidic devices. Here, we present an inexpensive, single-step, and rapid fabrication method for multi-depth microfluidic devices using a high-resolution liquid crystal display (LCD) stereolithographic (SLA) three-dimensional (3D) printing system. With the pixel size down to 47.25 μm, the feature resolutions in the horizontal and vertical directions are 150 μm and 50 μm, respectively. The multi-depth molds were successfully printed at the same time and the multi-depth features were transferred properly to the polydimethylsiloxane (PDMS) having multi-depth channels via soft lithography. A flow-focusing droplet generator with a multi-depth channel was fabricated using the presented 3D printing method. Experimental results show that the multi-depth channel could manipulate the morphology and size of droplets, which is desired for many engineering applications. Taken together, LCD SLA 3D printing is an excellent alternative method to the multi-step photolithography for the fabrication of multi-depth microfluidic devices. Taking the advantages of its controllability, cost-effectiveness, and acceptable resolution, LCD SLA 3D printing can have a great potential to fabricate 3D microfluidic devices.


2005 ◽  
Vol 2 (2) ◽  
pp. 180-183 ◽  
Author(s):  
T.M. Floyd-Smith ◽  
J.P. Golden ◽  
P.B. Howell ◽  
F.S. Ligler

2015 ◽  
Vol 7 (7) ◽  
pp. 2968-2976 ◽  
Author(s):  
Amber M. Pentecost ◽  
R. Scott Martin

A new method of fabricating all-polystyrene devices with integrated electrodes and fluidic tubing is described.


Author(s):  
Smitha M. N. Rao ◽  
Uday Tata ◽  
Victor K. Lin ◽  
Jer-Tsong Hsieh ◽  
Kytai Nguyen ◽  
...  

We have designed and characterized a poly-dimethyl-siloxane (PDMS) based microfluidic device called MiMiC™ that enables time-lapse study of cell migration. Cell migration is a key step of malignant metastasis during cancer progression. The device mimics the narrow confines the cells need to traverse and the microenvironments that are similar to the ones inside human body. Photolithography and soft lithography processes were used to fabricate the microfluidic devices. The device consists of two separate chambers connected by microfluidic channels allowing introduction of cells in one chamber and chemoattractants in the other. The response of lung-metastasized prostate cancer (PC-3-ML) cells and their migration response to chemoattractants were observed and analyzed. The numbers of cells under migration were determined from time-lapse images and compared to control groups. Our microfluidic assays provide advantages over the traditional Boyden chambers such as time-lapse observation, use of smaller amounts of reagents and direct assessment of cells under migration.


Sign in / Sign up

Export Citation Format

Share Document