Sliding Mode Control of a Three-Phase AC/DC Voltage Source Converter Under Unknown Load Conditions: Industry Applications

2018 ◽  
Vol 48 (10) ◽  
pp. 1771-1780 ◽  
Author(s):  
Jianxing Liu ◽  
Yunfei Yin ◽  
Wensheng Luo ◽  
Sergio Vazquez ◽  
Leopoldo G. Franquelo ◽  
...  
Author(s):  
R. S. Bajpai ◽  
Amarjeet Singh

This paper deals with sliding mode control of converter and its application to distributed generation. Sliding mode control is used to control the voltage source converter in voltage or current control mode. Modeling and control of H bridge converter system using sliding mode control is proposed. Easily implemented sliding surfaces provide prominent dynamic characteristics against changes in the load and in the input voltage. Distribution static compensator (DSTATCOM) is used to control the voltage of the bus to which it is connected to a balance sinusoid in respect of the harmonic distortion in supply or load side. A variable wind turbine generator is used to produces a variable DC voltage which is placed as input voltage source to converter of DSTATCOM. A control strategy for grid voltage control using DSTATCOM in voltage control mode has been implemented in respect of the wind variation. The results are validated using PSCAD/EMTDC simulation studies.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2590 ◽  
Author(s):  
Seghir Benhalima ◽  
Rezkallah Miloud ◽  
Ambrish Chandra

In this paper enhanced control strategies for standalone microgrids based on solar photovoltaic systems (SVPAs) and diesel engine driven fixed speed synchronous generators, are presented. Single-phase d-q theory-based sliding mode controller for voltage source converter voltage source converter (VSC) is employed to mitigate harmonics, balance diesel generator (DG) current, and to inject the generated power by SVPA into local grid. To achieve fast dynamic response with zero steady-state error during transition, sliding mode controller for inner control loop is employed. To achieve maximum power point tracking (MPPT) from SVPA without using any MPPT method, a DC-DC buck boost converter supported by battery storage system is controlled using a new control strategy based on sliding mode control with boundary layer. In addition, modeling and detailed stability analysis are performed. The performance of the developed control strategies, are validate by simulation using MATLAB/Simulink and in real-time using hardware prototype.


Sign in / Sign up

Export Citation Format

Share Document