Sliding Mode Control Application in Wind Energy Conversion System Using DSTATCOM

Author(s):  
R. S. Bajpai ◽  
Amarjeet Singh

This paper deals with sliding mode control of converter and its application to distributed generation. Sliding mode control is used to control the voltage source converter in voltage or current control mode. Modeling and control of H bridge converter system using sliding mode control is proposed. Easily implemented sliding surfaces provide prominent dynamic characteristics against changes in the load and in the input voltage. Distribution static compensator (DSTATCOM) is used to control the voltage of the bus to which it is connected to a balance sinusoid in respect of the harmonic distortion in supply or load side. A variable wind turbine generator is used to produces a variable DC voltage which is placed as input voltage source to converter of DSTATCOM. A control strategy for grid voltage control using DSTATCOM in voltage control mode has been implemented in respect of the wind variation. The results are validated using PSCAD/EMTDC simulation studies.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2590 ◽  
Author(s):  
Seghir Benhalima ◽  
Rezkallah Miloud ◽  
Ambrish Chandra

In this paper enhanced control strategies for standalone microgrids based on solar photovoltaic systems (SVPAs) and diesel engine driven fixed speed synchronous generators, are presented. Single-phase d-q theory-based sliding mode controller for voltage source converter voltage source converter (VSC) is employed to mitigate harmonics, balance diesel generator (DG) current, and to inject the generated power by SVPA into local grid. To achieve fast dynamic response with zero steady-state error during transition, sliding mode controller for inner control loop is employed. To achieve maximum power point tracking (MPPT) from SVPA without using any MPPT method, a DC-DC buck boost converter supported by battery storage system is controlled using a new control strategy based on sliding mode control with boundary layer. In addition, modeling and detailed stability analysis are performed. The performance of the developed control strategies, are validate by simulation using MATLAB/Simulink and in real-time using hardware prototype.


2019 ◽  
Vol 8 (2) ◽  
pp. 2972-2978

BLDC motors are generally implemented in copious industrial processes because of its high proficiency, large torque and minimum volume. The variation in load torque, causes the variation of speed in BLDC motor, which leads the complete system in unstable condition. In this paper a robust first-order SM controller scheme depends on twofold controlling algorithm for angular velocity and also current control in Brushless DC motor to attenuate the chattering problems. Two cascaded sliding mode controllers of first-order are used and first sliding mode controller generates stator currents based on speed error then the second SM controller generates voltage based on current-error in stator which runs the universal bridge by this controlled voltage source. In addition to the method suggested by Slotine, two feed forward loops are added to both speed and current errors to improve the response. The existing sliding-mode control is unresponsive to uncertainties and will cause undesirable chattering problems. To overcome this snag, a manual control law in conjunction with Sliding mode control is utilized that provides smooth and chattering free actual control signal. The overall system stability performance is implemented in MATLAB/SIMULINK and simulation results shows that proposed scheme is robust with respect to uncertainty in the system


Author(s):  
Akram Qashou ◽  
Sufian Yousef ◽  
Abdallah A. Smadi ◽  
Amani A. AlOmari

AbstractThe purpose of this paper is to describe the design of a Hybrid Series Active Power Filter (HSeAPF) system to improve the quality of power on three-phase power distribution grids. The system controls are comprise of Pulse Width Modulation (PWM) based on the Synchronous Reference Frame (SRF) theory, and supported by Phase Locked Loop (PLL) for generating the switching pulses to control a Voltage Source Converter (VSC). The DC link voltage is controlled by Non-Linear Sliding Mode Control (SMC) for faster response and to ensure that it is maintained at a constant value. When this voltage is compared with Proportional Integral (PI), then the improvements made can be shown. The function of HSeAPF control is to eliminate voltage fluctuations, voltage swell/sag, and prevent voltage/current harmonics are produced by both non-linear loads and small inverters connected to the distribution network. A digital Phase Locked Loop that generates frequencies and an oscillating phase-locked output signal controls the voltage. The results from the simulation indicate that the HSeAPF can effectively suppress the dynamic and harmonic reactive power compensation system. Also, the distribution network has a low Total Harmonic Distortion (< 5%), demonstrating that the designed system is efficient, which is an essential requirement when it comes to the IEEE-519 and IEC 61,000–3-6 standards.


Sign in / Sign up

Export Citation Format

Share Document