Automated Demand Response Framework in ELNs: Decentralized Scheduling and Smart Contract

2020 ◽  
Vol 50 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Xiaodong Yang ◽  
Guofeng Wang ◽  
Haibo He ◽  
Junjie Lu ◽  
Youbing Zhang
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1881
Author(s):  
Alexandre Lucas ◽  
Dimitrios Geneiatakis ◽  
Yannis Soupionis ◽  
Igor Nai-Fovino ◽  
Evangelos Kotsakis

Demand response (DR) services have the potential to enable large penetration of renewable energy by adjusting load consumption, thus providing balancing support to the grid. The success of such load flexibility provided by industry, communities, or prosumers and its integration in electricity markets, will depend on a redesign and adaptation of the current interactions between participants. New challenges are, however, bound to appear with the large scale contribution of smaller assets to flexibility, including, among others, the dispatch coordination, the validation of delivery of the DR provision, and the corresponding settlement of contracts, while assuring secured data access among interested parties. In this study we applied distributed ledger (DLT)/blockchain technology to securely track DR provision, focusing on the validation aspect, assuring data integrity, origin, fast registry, and sharing within a permissioned system, between all relevant parties (including transmission system operators (TSOs), aggregators, distribution system operators (DSOs), balance responsible parties (BRP), and prosumers). We propose a framework for DR registry and implemented it as a proof of concept on Hyperledger Fabric, using real assets in a laboratory environment, in order to study its feasibility and performance. The lab set up includes a 450 kW energy storage system, scheduled to provide DR services, upon a system operator request and the corresponding validations and verifications are done, followed by the publication on a blockchain. Results show the end to end execution time remained below 1 s, when below 32 requests/sec. The smart contract memory utilization did not surpass 1% for both active and passive nodes and the peer CPU utilization, remained below 5% in all cases simulated (3, 10, and 28 nodes). Smart Contract CPU utilization remained stable, below 1% in all cases. The performance of the implementation showed scalable results, which enables real world adoption of DLT in supporting the development of flexibility markets, with the advantages of blockchain technology.


2019 ◽  
Vol 5 (1) ◽  
pp. 15-22
Author(s):  
Ardian Thresnantia Atmaja

The key objectives of this paper is to propose a design implementation of blockchain based on smart contract which have potential to change international mobile roaming business model by eliminating third-party data clearing house (DCH). The analysis method used comparative analysis between current situation and target architecture of international mobile roaming business that commonly used by TOGAF Architecture Development Method. The purposed design of implementation has validated the business value by using Total Cost of Ownership (TCO) calculation. This paper applies the TOGAF approach in order to address architecture gap to evaluate by the enhancement capability that required from these three fundamental aspect which are Business, Technology and Information. With the blockchain smart contract solution able to eliminate the intermediaries Data Clearing House system, which impacted to the business model of international mobile roaming with no more intermediaries fee for call data record (CDR) processing and open up for online billing and settlement among parties. In conclusion the business value of blockchain implementation in the international mobile roaming has been measured using TCO comparison between current situation and target architecture that impacted cost reduction of operational platform is 19%. With this information and understanding the blockchain technology has significant benefit in the international mobile roaming business.


2017 ◽  
Vol 137 (5) ◽  
pp. 372-380 ◽  
Author(s):  
Yutaka Iino ◽  
Tsutomu Fujikawa ◽  
Saori Kaneko ◽  
Gaku Shimoda ◽  
Kazuto Kataoka ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document