Adaptive Perturbation Rejection Control for a Class of Converter Systems With Circuit Realization

Author(s):  
Xiaozheng Jin ◽  
Jiahu Qin ◽  
Wei Xing Zheng ◽  
Chengwei Yang
Keyword(s):  
Author(s):  
Martin Di Federico ◽  
Pedro Julian ◽  
Tomaso Poggi ◽  
Marco Storace

2021 ◽  
Author(s):  
Hideyuki Miyahara ◽  
Vwani Roychowdhury

Abstract The paradigm of variational quantum classifiers (VQCs) encodes classical information as quantum states, followed by quantum processing and then measurements to generate classical predictions. VQCs are promising candidates for efficient utilizations of noisy intermediate scale quantum (NISQ) devices: classifiers involving M-dimensional datasets can be implemented with only ⌈log2 M⌉ qubits by using an amplitude encoding. A general framework for designing and training VQCs, however, is lacking. An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes an ansatz: a circuit with a predetermined circuit geometry and parametrized gates expressing a time-evolution unitary operator; training involves learning the gate parameters through a gradient- descent algorithm where the gradients themselves can be efficiently estimated by the quantum circuit. The representational power of QCL, however, depends strongly on the choice of the ansatz, as it limits the range of possible unitary operators that a VQC can search over. Equally importantly, the landscape of the optimization problem may have challenging properties such as barren plateaus and the associated gradient-descent algorithm may not find good local minima. Thus, it is critically important to estimate (i) the price of ansatz; that is, the gap between the performance of QCL and the performance of ansatz-independent VQCs, and (ii) the price of using quantum circuits as classical classifiers: that is, the performance gap between VQCs and equivalent classical classifiers. This paper develops a computational framework to address both these open problems. First, it shows that VQCs, including QCL, fit inside the well-known kernel method. Next it introduces a framework for efficiently designing ansatz-independent VQCs, which we call the unitary kernel method (UKM). The UKM framework enables one to estimate the first known bounds on both the price of anstaz and the price of any speedup advantages of VQCs: numerical results with datatsets of various dimensions, ranging from 4 to 256, show that the ansatz-induced gap can vary between 10−20%, while the VQC-induced gap (between VQC and kernel method) can vary between 10−16%. To further understand the role of ansatz in VQCs, we also propose a method of decomposing a given unitary operator into a quantum circuit, which we call the variational circuit realization (VCR): given any parameterized circuit block (as for example, used in QCL), it finds optimal parameters and the number of layers of the circuit block required to approximate any target unitary operator with a given precision.


2018 ◽  
Vol 77 ◽  
pp. 49-65 ◽  
Author(s):  
Sadegh Biabanifard ◽  
S. Mehdi Hosseini ◽  
Mohammad Biabanifard ◽  
Shahrouz Asadi ◽  
Mustapha C.E. Yagoub

Author(s):  
Murat Koseoglu ◽  
Furkan Nur Deniz ◽  
Baris Baykant Alagoz ◽  
Ali Yuce ◽  
Nusret Tan

Abstract Analog circuit realization of fractional order (FO) elements is a significant step for the industrialization of FO control systems because of enabling a low-cost, electric circuit realization by means of standard industrial electronics components. This study demonstrates an effective operational amplifier-based analog circuit realization of approximate FO integral elements for industrial electronics. To this end, approximate transfer function models of FO integral elements, which are calculated by using Matsuda’s approximation method, are decomposed into the sum of low-pass filter forms according to the partial fraction expansion. Each partial fraction term is implemented by using low-pass filters and amplifier circuits, and these circuits are combined with a summing amplifier to compose the approximate FO integral circuits. Widely used low-cost industrial electronics components, which are LF347N opamps, resistor and capacitor components, are used to achieve a discrete, easy-to-build analog realization of the approximate FO integral elements. The performance of designed circuit is compared with performance of Krishna’s FO circuit design and performance improvements are shown. The study presents design, performance validation and experimental verification of this straightforward approximate FO integral realization method.


Sign in / Sign up

Export Citation Format

Share Document