An Approximation of Interval Type-2 Fuzzy Controllers Using Fuzzy Ratio Switching Type-1 Fuzzy Controllers

Author(s):  
C W Tao ◽  
Jinshiuh Taur ◽  
Chen-Chia Chuang ◽  
Chia-Wen Chang ◽  
Yeong-Hwa Chang
Author(s):  
Chih-Jer Lin ◽  
Chun-Ying Lee ◽  
Ying Liu

This study presents a vibration control using actively tunable vibration absorbers (ATVA) to suppress vibration of a thin plate. The ATVA’s is made of a sandwich hollow structure embedded with the electrorheological fluid (ERF). ERF is considered to be one of the most important smart fluids and it is suitable to be embedded in a smart structure due to its controllable viscosity property. ERF’s apparent viscosity can be controlled in response to the electric field and the change is reversible in 10 microseconds. Therefore, the physical properties of the ERF-embedded smart structure, such as the stiffness and damping coefficients, can be changed in response to the applied electric field. A mathematical model is difficult to be obtained to describe the exact characteristics of the ERF embedded ATVA because of the nonlinearity of ERF’s viscosity. Therefore, a fuzzy modeling and experimental validations of ERF-based ATVA from stationary random vibrations of thin plates are presented in this study. Because Type-2 fuzzy sets generalize Type-1 fuzzy sets so that more modelling uncertainties can be handled, a semi-active vibration controller is proposed based on Type-2 fuzzy sets. To investigate the different performances by using different types of fuzzy controllers, the experimental measurements employing type-1 fuzzy and interval type-2 fuzzy controllers are implemented by the Compact RIO embedded system. The fuzzy modeling framework and solution methods presented in this work can be used for design, performance analysis, and optimization of ATVA from stationary random vibration of thin plates.


Author(s):  
Chih-Jer Lin ◽  
Chun-Ying Lee ◽  
Ying Liu

This study presents a vibration control using actively tunable vibration absorbers (ATVA) to suppress vibration of a thin plate. The ATVA’s is made of a sandwich hollow structure embedded with the electrorheological fluid (ERF). ERF is considered to be one of the most important smart fluids and it is suitable to be embedded in a smart structure due to its controllable viscosity property. ERF’s apparent viscosity can be controlled in response to the electric field and the change is reversible in 10 microseconds. Therefore, the physical properties of the ERF-embedded smart structure, such as the stiffness and damping coefficients, can be changed in response to the applied electric field. A mathematical model is difficult to be obtained to describe the exact characteristics of the ERF embedded ATVA because of the nonlinearity of ERF’s viscosity. Therefore, a fuzzy modeling and experimental validations of ERF-based ATVA from stationary random vibrations of thin plates are presented in this study. Because Type-2 fuzzy sets generalize Type-1 fuzzy sets so that more modelling uncertainties can be handled, a semi-active vibration controller is proposed based on Type-2 fuzzy sets. To investigate the different performances by using different types of fuzzy controllers, the experimental measurements employing type-1 fuzzy and interval type-2 fuzzy controllers are implemented by the Compact RIO embedded system. The fuzzy modeling framework and solution methods presented in this work can be used for design, performance analysis, and optimization of ATVA from stationary random vibration of thin plates.


Author(s):  
Radu-Emil Precup ◽  
Radu-Codrut David ◽  
Raul-Cristian Roman ◽  
Alexandra-Iulia Szedlak-Stinean ◽  
Emil M. Petriu

2021 ◽  
pp. 1-28
Author(s):  
Ashraf Norouzi ◽  
Hossein Razavi hajiagha

Multi criteria decision-making problems are usually encounter implicit, vague and uncertain data. Interval type-2 fuzzy sets (IT2FS) are widely used to develop various MCDM techniques especially for cases with uncertain linguistic approximation. However, there are few researches that extend IT2FS-based MCDM techniques into qualitative and group decision-making environment. The present study aims to adopt a combination of hesitant and interval type-2 fuzzy sets to develop an extension of Best-Worst method (BWM). The proposed approach provides a flexible and convenient way to depict the experts’ hesitant opinions especially in group decision-making context through a straightforward procedure. The proposed approach is called IT2HF-BWM. Some numerical case studies from literature have been used to provide illustrations about the feasibility and effectiveness of our proposed approach. Besides, a comparative analysis with an interval type-2 fuzzy AHP is carried out to evaluate the results of our proposed approach. In each case, the consistency ratio was calculated to determine the reliability of results. The findings imply that the proposed approach not only provides acceptable results but also outperforms the traditional BWM and its type-1 fuzzy extension.


2014 ◽  
Vol 06 (02) ◽  
pp. 70-93 ◽  
Author(s):  
Hugo Araujo ◽  
Bo Xiao ◽  
Chuang Liu ◽  
Yanbin Zhao ◽  
H. K. Lam

Sign in / Sign up

Export Citation Format

Share Document