scholarly journals Beam Design and User Scheduling for Nonorthogonal Multiple Access With Multiple Antennas Based on Pareto Optimality

2018 ◽  
Vol 66 (11) ◽  
pp. 2876-2891 ◽  
Author(s):  
Junyeong Seo ◽  
Youngchul Sung
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Jiang ◽  
Deting Kong

The large bandwidth and multipath in millimeter wave (mmWave) cellular system assure the existence of frequency selective channels; it is necessary that mmWave system remains with frequency division multiple access (FDMA) and user scheduling. But for the hybrid beamforming system, the analog beamforming is implemented by the same phase shifts in the entire frequency band, and the wideband phase shifts may not be harmonious with all users scheduled in frequency resources. This paper proposes a joint user scheduling and multiuser hybrid beamforming algorithm for downlink massive multiple input multiple output (MIMO) orthogonal frequency division multiple access (OFDMA) systems. In the first step of user scheduling, the users with identical optimal beams form an OFDMA user group and multiplex the entire frequency resource. Then base station (BS) allocates the frequency resources for each member of OFDMA user group. An OFDMA user group can be regarded as a virtual user; thus it can support arbitrary MU-MIMO user selection and beamforming algorithms. Further, the analog beamforming vectors employ the best beam of each selected MU-MIMO user and the digital beamforming algorithm is solved by weight MMSE to acquire the best performance gain and mitigate the interuser inference. Simulation results show that hybrid beamforming together with user scheduling can greatly improve the performance of mmWave OFDMA massive MU-MIMO system.


Sign in / Sign up

Export Citation Format

Share Document