Dynamic Analysis and Control Approach for a High-Gain Step-Up Converter for Electrified Transportation

2017 ◽  
Vol 3 (3) ◽  
pp. 656-667 ◽  
Author(s):  
Fei Shang ◽  
Haowen Wu ◽  
Geng Niu ◽  
Mahesh Krishnamurthy ◽  
Alexander Isurin
2020 ◽  
Vol 29 (15) ◽  
pp. 2050246 ◽  
Author(s):  
B. N. Ch. V. Chakravarthi ◽  
G. V. Siva Krishna Rao

In solar photovoltaic (PV)-based DC microgrid systems, the voltage output of the classical DC–DC converter produces very less voltage as a result of poor voltage gain. Therefore, cascaded DC–DC boost converters are mandatory for boosting the voltage to match the DC microgrid voltage. However, the number of devices utilized in the DC–DC conversion stage becomes higher and leads to more losses. Thereby, it affects the system efficiency and increases the complication of the system and cost. In order to overcome this drawback, a novel double-boost DC–DC converter is proposed to meet the voltage in DC microgrid. Also, this paper discusses the detailed operation of maximum power point (MPP) tracking techniques in the novel double-boost DC–DC converter topology. The fundamental [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] characteristics of solar photovoltaic system, operational details of MPP execution and control strategies for double-boost DC/DC converter are described elaborately. The proposed converter operation and power injection into the DC microgrid are verified through the real-time PSCAD simulation and the validation is done through the experiment with hardware module which is indistinguishable with the simulation platform.


2018 ◽  
Vol 3 (2) ◽  
pp. 101
Author(s):  
Priskila Christine Rahayu ◽  
Vanesa Darvin

This study focused on quality improvement on ceramic tiles production process at PT Arwana Citramulia. This study used data defects for 12 months (May 2016 – April 2017) and only focus on one type of defect and it is chop corner. Six sigma with DMAIC (define, measure, analyze, improve, and control) approach was used to improve the process. Each step of DMAIC was conducted to carefully analyze and keep the process precisely. The ceramic tiles production process contains a number of 4375 products defects in million opportunities (DPMO), with sigma level of 4.13. In the improve step of DMAIC, FMEA form was used to propose some recommendations in order to improve the process, some of that that are provision of lubricant periodically by the operator, polishing on the surface of the liner to clean and clear, examination and maintenance periodically. Keyword : Quality, Six Sigma, DMAIC, Defects.


Sign in / Sign up

Export Citation Format

Share Document