scholarly journals A Computationally Efficient Path-Following Control Strategy of Autonomous Electric Vehicles With Yaw Motion Stabilization

2020 ◽  
Vol 6 (2) ◽  
pp. 728-739
Author(s):  
Ningyuan Guo ◽  
Xudong Zhang ◽  
Yuan Zou ◽  
Basilio Lenzo ◽  
Tao Zhang
Author(s):  
Yuan Zou ◽  
Ningyuan Guo ◽  
Xudong Zhang

This article proposes an integrated control strategy of autonomous distributed drive electric vehicles. First, to handle the multi-constraints and integrated problem of path following and the yaw motion control, a model predictive control technique is applied to determine optimal front wheels’ steering angle and external yaw moment synthetically and synchronously. For ensuring the desired path-tracking performance and vehicle lateral stability, a series of imperative state constraints and control references are transferred in the form of a matrix and imposed into the rolling optimization mechanism of model predictive control, where the detailed derivation is also illustrated and analyzed. Then, the quadratic programming algorithm is employed to optimize and distribute each in-wheel motor’s torque output. Finally, numerical simulation validations are carried out and analyzed in depth by comparing with a linear quadratic regulator–based strategy, proving the effectiveness and control efficacy of the proposed strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Adorjan Kovacs ◽  
Istvan Vajk

This paper presents a novel approach for path-following control of a four-wheeled autonomous vehicle. The rear wheels of the vehicle are driven independently, all four wheels can be braked independently, and the front wheels are steered together. The proposed cascade structure consists of two convex optimization-based parts: one for path-following and another for the control allocation problem of the actuators. The control algorithm presents cost functions for the allocation problem focusing on safety. The proposed cost functions were examined and compared to former ones in a simulation environment. After all, the controller was tested in real-time test on a Lotus Evora test vehicle developed by ThyssenKrupp.


Sign in / Sign up

Export Citation Format

Share Document