scholarly journals Experimental characterization of collapse-mode CMUT operation

Author(s):  
O. Oralkan ◽  
B. Bayram ◽  
G.G. Yaralioglu ◽  
A.S. Ergun ◽  
M. Kupnik ◽  
...  
Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Shuang Zhang ◽  
...  

Capacitive Micromachined Ultrasonic Transducer (CMUT) is a promising ultrasonic transducer in medical diagnosis and therapeutic applications that demand a high output pressure. The concept of a CMUT with an annular embossed pattern on a membrane working in collapse mode is proposed to further improve the output pressure. To evaluate the performance of an embossed CMUT cell, both the embossed and uniform membrane CMUT cells were fabricated in the same die with a customized six-mask sacrificial release process. An annular nickel pattern with the dimension of 3 μ m × 2 μ m (width × height) was formed on a full top electrode CMUT to realize an embossed CMUT cell. Experimental characterization was carried out with optical, electrical, and acoustic instruments on the embossed and uniform CMUT cells. The embossed CMUT cell achieved 27.1% improvement of output pressure in comparison to the uniform CMUT cell biased at 170 V voltage. The fractional bandwidths of the embossed and uniform CMUT cells were 52.5% and 41.8%, respectively. It substantiated that the embossed pattern should be placed at the vibrating center of the membrane for achieving a higher output pressure. The experimental characterization indicated that the embossed CMUT cell has better operational performance than the uniform CMUT cell in collapse region.


2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 16-25
Author(s):  
J. P. Wojno ◽  
T. J. Mueller ◽  
W. K. Blake

Sign in / Sign up

Export Citation Format

Share Document