Compressed Sensing Based Synthetic Transmit Aperture for Phased Array Using Hadamard Encoded Diverging Wave Transmissions

Author(s):  
Jing Liu ◽  
Jianwen Luo
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Jing Liu ◽  
ChongZhao Han ◽  
XiangHua Yao ◽  
Feng Lian

A novel method named as coherent column replacement method is proposed to reduce the coherence of a partially deterministic sensing matrix, which is comprised of highly coherent columns and random Gaussian columns. The proposed method is to replace the highly coherent columns with random Gaussian columns to obtain a new sensing matrix. The measurement vector is changed accordingly. It is proved that the original sparse signal could be reconstructed well from the newly changed measurement vector based on the new sensing matrix with large probability. This method is then extended to a more practical condition when highly coherent columns and incoherent columns are considered, for example, the direction of arrival (DOA) estimation problem in phased array radar system using compressed sensing. Numerical simulations show that the proposed method succeeds in identifying multiple targets in a sparse radar scene, where the compressed sensing method based on the original sensing matrix fails. The proposed method also obtains more precise estimation of DOA using one snapshot compared with the traditional estimation methods such as Capon, APES, and GLRT, based on hundreds of snapshots.


2013 ◽  
Vol 143 ◽  
pp. 575-604 ◽  
Author(s):  
Xiaoyang Wen ◽  
Gangyao Kuang ◽  
Jiemin Hu ◽  
Ronghui Zhan ◽  
Jun Zhang

2013 ◽  
Vol 347-350 ◽  
pp. 317-321 ◽  
Author(s):  
Xian Yue Ouyang ◽  
Guang Zhi Dai ◽  
Ren Fa Li ◽  
Qing Guang Zeng

this study presents an eight array ultrasonic signal phased array sparse sampling experiment system based ultrasonic phased array technology and Compressed Sensing (CS). Proposed system considers recovery ultrasonic beam signal received eight phased array elements with sparse samples captured using sub-Nyquist model in CS recovery algorithm. We have the block defect detection test in the system. The test result approximated the actual block defect position. Based on block defect detection test, We compared sparse sampling value using spectrum estimation to Compressed Sensing recovery algorithm imaging, and no focus and focus detection effect, proved the phased array experiment system based on Compressed Sensing .it can greatly improve the detection signal to noise ratio (SNR) and sensitivity. So we verify the phased array focus can improve the detection ability.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shafqat Ullah Khan ◽  
Ijaz Mansoor Qureshi ◽  
Aqdas Naveed ◽  
Bilal Shoaib ◽  
Abdul Basit

A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA), parallel coordinate descent (PCD) algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.


Sign in / Sign up

Export Citation Format

Share Document